Automated GPU Support in LuNA Fragmented Programming System

tkacheva's picture
TitleAutomated GPU Support in LuNA Fragmented Programming System
Publication TypeConference Paper
Year of Publication2017
AuthorsPerepelkin V.A., Belyaev N.
Conference NameParallel Computing Technologies - 14th International Conference, PaCT 2017, Nizhny Novgorod, Russia, September 4-8, 2017, Proceedings
PublisherSpringer
Conference LocationNizhny Novgorod, Russia
Other NumbersLNCS, vol. 10421, pp. 272-277
AbstractThe paper is devoted to the problem of reduction of complexity of development of numerical parallel programs for distributed memory computers with hybrid (CPU+GPU) computing nodes. The basic idea is to employ a high-level representation of an application algorithm to allow its automated execution on multicomputers with hybrid nodes without a programmer having to do low-level programming. LuNA is a programming system for numerical algorithms, which implements the idea, but only for CPU. In the paper we propose a LuNA language extension, as well as necessary run-time algorithms to support GPU utilization. For that a user only has to provide a limited number of computational GPU procedures using CUDA, while the system will take care of such associated low-level problems, as jobs scheduling, CPU-GPU data transfer, network communications and others. The algorithms developed and implemented take advantage of concerning informational dependencies of an application and support automated tuning to available hardware configuration and application input data.
URLhttps://link.springer.com/chapter/10.1007/978-3-319-62932-2_26
DOI10.1007/978-3-319-62932-2_26

File attachment: