Submitted by tkacheva on
Title | Automated GPU Support in LuNA Fragmented Programming System |
Publication Type | Conference Paper |
Year of Publication | 2017 |
Authors | Perepelkin V.A., Belyaev N. |
Conference Name | Parallel Computing Technologies - 14th International Conference, PaCT 2017, Nizhny Novgorod, Russia, September 4-8, 2017, Proceedings |
Publisher | Springer |
Conference Location | Nizhny Novgorod, Russia |
Other Numbers | LNCS, vol. 10421, pp. 272-277 |
Abstract | The paper is devoted to the problem of reduction of complexity of development of numerical parallel programs for distributed memory computers with hybrid (CPU+GPU) computing nodes. The basic idea is to employ a high-level representation of an application algorithm to allow its automated execution on multicomputers with hybrid nodes without a programmer having to do low-level programming. LuNA is a programming system for numerical algorithms, which implements the idea, but only for CPU. In the paper we propose a LuNA language extension, as well as necessary run-time algorithms to support GPU utilization. For that a user only has to provide a limited number of computational GPU procedures using CUDA, while the system will take care of such associated low-level problems, as jobs scheduling, CPU-GPU data transfer, network communications and others. The algorithms developed and implemented take advantage of concerning informational dependencies of an application and support automated tuning to available hardware configuration and application input data. |
URL | https://link.springer.com/chapter/10.1007/978-3-319-62932-2_26 |
DOI | 10.1007/978-3-319-62932-2_26 |