
Automated Construction of High Performance

Distributed Programs in LuNA System

Darkhan Akhmed-Zaki
1
, Danil Lebedev

1[0000-0002-5186-6483]
, Victor Malyshkin

2,3,4
 and

Vladislav Perepelkin
2,3[0000-0002-6998-4525]

1 Al-Farabi Kazakh National University, Almaty, Kazakhstan
2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk,

Russia
3 Novosibirsk State University, Novosibirsk, Russia

4 Novosibirsk State Technical University, Novosibirsk, Russia

perepelkin@ssd.sscc.ru

Abstract. The paper concerns the problem of efficient distributed execution of

fragmented programs in LuNA system, which is a automated parallel programs

construction system. In LuNA an application algorithm is represented with a

high-level programming language, which makes the representation portable, but

also causes the complex problem of automatic construction of an efficient dis-

tributed program, which implements the algorithm on given hardware and data.

The concept of adding supplementary information (recommendations) is em-

ployed to direct the process of program construction based on user knowledge.

With this approach the user does not have to program complex distributed logic,

while the system makes advantage of the user knowledge to optimize program

and its execution. Implementation of this concept within LuNA system is con-

cerned. In particular, a conventional compiler is employed to optimize the gen-

erated code. Some performance tests are conducted to compare efficiency of the

approach with both previous LuNA release and reference hand-coded MPI im-

plementation performance.

Keywords: Automated Parallel Programs Construction, Fragmented Program-

ming Technology, LuNA System.

1 Introduction

Considerable constant growth of supercomputers’ capabilities during last decades is

accompanied with the increase of complexity of high performance computing hard-

ware usage. This, in turn, makes implementation of large-scale numerical models

harder for users of supercomputers. Efficient utilization of modern supercomputers’

resources requires an application to be scalable and tunable to hardware configura-

tion. In some cases dynamic load balancing, co-processors support (GPU, FPGA,

etc.), fault tolerance and other properties are required. Implementation of such proper-

ties is not easy and requires specific knowledge and skills, different from what im-

plementation of the “numerical” part of the program requires.

2

Especially this problem affects users, who develop new numerical models and al-

gorithms, and therefore they are unable to use ANSYS Fluent [1], NAMD [2] and

other highly-efficient software tools, optimized by skillful programmers. Strict per-

formance and memory constraints also make unusable most non-programmer friendly

mathematical software, such as MathWorks MATLAB [3], GNU OCTAVE [4] or

Wolfram Mathematica [5]. The only option to reduce complexity of efficient parallel

program development is to employ programming systems [6–11], which automate

many low-level error-prone routine jobs and provide higher level means, suitable for

various particular cases.

In Charm++ [6] computations are represented as a set of distributed communi-

cating objects called chares. The run-time environment is capable of serializing and

redistributing chares, scheduling their execution and performing other execution man-

agement tasks in order to optimize program execution. The user is allowed to tune

some settings of the execution, including choice of dynamic load balancer. Charm++

achieves high efficiency while freeing the user from a number of complex tasks of

parallel programming. In PaRSEC [7] the application domain is limited to a dense

linear algebra algorithms class (and some other similar algorithms). In particular,

iterations with dynamic conditions are not supported. This and other constraints are

used to make particular systems algorithms and heuristics effective, which, in turn,

allows to achieve high performance within the application domain. Legion [8] system

follows a powerful approach to separately define computations and their execution

management as orthogonal parts of the application. With this approach the user is

responsible for programming resources distribution, computations scheduling and

other execution management tasks, but the means Legion provides allow doing it

without the risk of bringing errors into code. LuNA system [9] follows the similar

approach, but instead of obliging the user to do the management the system allows

automated construction of the management code. Many other systems exist and

evolve to study various computational models, system algorithms and heuristics and

develop better facilities of parallel programs construction automation [10,11].

It can be stated, that big effort is put into development of such systems, although

much more work has to be done in order to widen their application domains and im-

prove quality of the automation performed.

This paper discusses the approach employed by LuNA system to achieve satisfac-

tory performance of constructed parallel programs. LuNA is a system of automated

construction of parallel programs, which implement large-scale numerical models for

supercomputers. The system is being developed in the Institute of Computational

Mathematics and Mathematical Geophysics, SB RAS.

The next sections present the fragmented programming technology approach upon

which LuNA system is based, the implementation of the approach in LuNA system

and some performance tests. The conclusion and future works section ends the paper.

3

2 The Fragmented Programming Technology Approach

In the fragmented programming technology an application algorithm is represented in

a hardware-independent form called fragmented algorithm. Fragmented algorithm

(FA) is basically a declarative specification, that defines two potentially infinite sets

— a set of computational fragments (CF) and a set of data fragments (DF), where

each CF is a side-effect free sequential subroutine invocation and each DF being an

immutable piece of data. For each CF two finite subsets of DFs are defined to be input

and output DFs correspondingly. The CF’s subroutine computes values of output DFs

provided values of input DFs are available in local memory. FA as an enumeration

representation employs a number of operators, which describe DFs and CFs. The

representation is based on the definition of computational model [12], i.e FA is a par-

ticular form of computational model, in which exactly one algorithm is deductible.

Fragmented program (FP) is an FA with supplementary information called recom-

mendations. While FA defines computations functionally (i.e. how DFs are computed

from other DFs), recommendations affect non-functional properties of the computa-

tions, such as computational time, memory usage, network traffic, etc. For example, a

recommendation may force two DFs to share the same memory buffer within differ-

ent time spans in order to reduce memory usage, or a recommendation may define

data allocation strategy for a distributed array of DFs, etc.

FA and recommendations are orthogonal in sense that recommendation do not af-

fect the values computed, but only affect how FA entities (DFs and CFs) are mapped

into limited resources of a multicomputer in time. Different recommendations cause

execution of the same FA to be optimized for different hardware configuration and/or

optimization criteria (memory, time, network, etc.). There are two different kinds of

recommendations. The first one is informational recommendation, which formulates

properties of FA, which are hard to obtain automatically, for example estimated com-

putational complexity of different CFs or the structure of DFs. The second kind of

recommendations is prescriptive recommendation, which directs the execution in

some way, for example mapping of DFs to computing nodes or order of CFs execu-

tion. Neither kind of recommendations is mandatory and even if recommendations are

supplied, they can be partially or completely ignored by the system.

Such an orthogonality is common for various programming systems [6–9], since it

is the basis, which allows a system to control execution. Let’s illustrate some differ-

ences in systems’ approaches on the example of objects (fragments, jobs, etc.) distri-

bution. In some systems, such as Charm++, the system distributes the objects using

system algorithms. In other systems, such as PaRSEC, the user specifies the distribu-

tion without programming it, and the system implements it. In systems, such as Le-

gion the user needs to program the distribution using system API.

In LuNA a hybrid approach is employed. If no recommendations are supplied, the

system will decide on distribution using system algorithms. If informational recom-

mendations are supplied, a (probably) better distribution will be constructed based on

this additional knowledge. If prescriptive recommendations are given, then they will

be followed by the system. The prescriptive recommendations are least portable, they

are useful until the system is able to automatically construct satisfactory distribution.

4

After that the prescriptive recommendations should be ignored. Informational rec-

ommendations are useful in a longer term. They describe significant properties of FA,

which are hard to obtain automatically and are used to construct better distribution by

knowing the particular case and thus using better particular distribution construction

algorithms and heuristics. Once system algorithms of static and dynamic analysis

become more powerful, informational recommendations become superfluous. At that

point pure FA is sufficient to construct an efficient parallel program.

According to this approach FA is made free of all non-functional decisions, which

include multiple assignment (data mutability), order of computations (except informa-

tional dependencies), resources distribution, garbage collection and so on. In

Charm++, for instance, multiple assignment present, which is currently employed to

optimize performance, but later it will become an obstacle for existing Charm++ pro-

grams. Recommendations currently play critical role in achieving high performance,

because current knowledge in parallel programming automation is not enough to effi-

ciently execute such high performance representations as FA automatically. Recom-

mendations cover the lack of such knowledge and allow to achieve satisfactory per-

formance of FA execution.

3 LuNA System

FP is described in two languages — LuNA and C++. LuNA is used to specify DFs

and CFs, as well as recommendations, while C++ is used to define sequential subrou-

tines, which are used to implement CFs in run time. C++ is a powerful conventional

language, supported by well-developed compilers and other tools, thus making single

jobs — CFs — highly efficient, leaving the system solely with problems of distribut-

ed execution.

Older LuNA releases employed the semi-interpretation approach, where FP is in-

terpreted in run time by LuNA run-time system. With this approach the run-time sys-

tem interprets FP, constructs internal objects, which correspond to CFs and DFs, dis-

tributes them to computing nodes, transfers input DFs to CFs and executes CFs once

all input DFs are available locally, etc. Current LuNA release employs conceptually

the same, but practically more efficient approach. With this approach each CF is con-

sidered as a lightweight process, controlled by a program and being executed in a

passive run-time environment, accessible via API. Program for each CF is generated

automatically by LuNA compiler and usually comprises the following main steps:

─ Migrate to another node (if needed), where CF will be executed,

─ Request input DFs and wait for them to arrive,

─ Perform execution on input DFs with production of output DFs,

─ Spawn and initialize new CFs,

─ Perform finalization actions.

Finalization actions may include deletion of DFs, storing computed DFs to current

or remote computing nodes and so on. Certain steps may vary depending on CF type

(single CF execution, subroutine invocation, for- or while- loop, if-then-else operator,

5

etc.), allowed in LuNA language. (Here and below CF’s program denotes the pro-

gram, generated for the CF by LuNA compiler, which should be differentiated from

C++ sequential subroutines, which are provided by user as a part of FP.) CF’s pro-

gram also depends on compiler algorithms, recommendations, hardware configura-

tion, etc. Generally, all static decisions on how FP should perform are formulated as

CFs’ programs. Note, that CFs’ programs are not rigid. For instance, the migration

step is statically generated, but exact node and route to it may be computed dynami-

cally. Generally, all dynamic decisions are left to run time.

Since CF’s programs are generated in C++, they are also optimized by convention-

al C++ compiler, which takes care of many minor, but important optimizations, such

as static expressions evaluation, dead code elimination, call stack optimizations and

all other optimizations conventional compilers are good at.

While delegating serial code optimization (sequential CF’s implementations and

CF’s generated programs) to a well-developed C++ compiler, LuNA compiler and

run-time system focus on the distributed part of the execution. Based on recommenda-

tions, decisions on CFs and DFs distribution to computing nodes, order of CFs execu-

tion, garbage collection and others are made statically (in LuNA compiler) and/or

dynamically (in run-time system). Consideration of these algorithms is out of scope of

the paper and can be found in other publications on LuNA system.

4 Performance Evaluation

To investigate performance of generated programs in comparison with the previous

approach a number of tests was conducted. As an application a model 3D heat equa-

tion solution in unit cube is considered. This application was studied in our previous

paper [13], where more details on the application can be found. The application data

consists of a 3D mesh, decomposed in three dimensions into subdomains. The compu-

tations are performed iteratively, where each step is solved with pipelined Thomas

algorithm [14].

The testing was conducted on MVS-10P supercomputer of the Joint Supercomput-

er Centre of Russian Academy of Sciences [15]. It comprises 2×Xeon E5-2690 CPU-

based computing nodes with 64 GB RAM each. The following parameters, repre-

sentative for such applications, were chosen. Mesh size: from 100
3
 to 1000

3
 with step

100 (in every dimension), number of cores: from 2
3
 (8) to 6

3
 (216) with step 1 (in

each dimension).

The results are shown in Fig. 1. Here LI (LuNA-Interpreter) denotes the previous

LuNA release, where run-time interpretation approach is employed, while LC (Lu-

NA-Compiled) denotes the current approach, where CFs’ programs are generated.

MPI denotes the reference implementation, hand-coded using Message Passing Inter-

face.

6

Fig. 1. Program execution time (in seconds). MPI- LI- and LC- are MPI-based, LuNA-

Interpreter and LuNA-Compiled implementations correspondingly. The number denotes the

number of cores. The X axis is the mesh size.

From Fig. 1 it can be seen, that current LuNA release produces a much more effi-

cient implementation, than the previous release, although reference MPI implementa-

tion outperforms them both. It also can be seen, that the most advantage LC over LI

can be observed for smaller fragments sizes, which is expected, since serial code op-

timization mainly reduces overhead, which is proportional to number of fragments

(and not their sizes, for example). The reference MPI implementation is about 10

times faster, which means, that more optimizations are required. In particular, net-

work overhead, imposed by run-time system communications, has to be reduced.

However, such a slowdown may be tolerable, because, firstly, development of FP

required less skill and effort from the user, and, secondly, with system optimization

existing FPs become more efficient as a consequence without any need to change.

5 Conclusion

An approach to achieve efficient execution of parallel programs, defined in a high

level language, is considered, as well as its implementation in LuNA system for au-

tomated parallel programs construction. Performance tests were conducted to com-

pare current LuNA performance with the previous release and reference hand-coded

implementation of the same test. In the future both software optimization and devel-

opment of intelligent system algorithms are required to achieve better performance.

7

References

1. ANSYS Fluent Web Page, https://www.ansys.com/products/fluids/ansys-fluent, accessed:

2019/04/01.

2. Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel,

R., Kale, L. Schulten, K.: Scalable molecular dynamics with NAMD. Journal of Computa-

tional Chemistry, 26:1781-1802 (2005).

3. MathWorks MATLAB official web-site,

https://www.mathworks.com/products/matlab.html, last accessed: 2019/04/01.

4. GNU Octave Web Site, https://www.gnu.org/software/octave/, last accessed: 2019/04/01.

5. WOLFRAM MATHEMATICA Web Site, http://www.wolfram.com/mathematica/, last

accessed: 2019/04/01.

6. Robson, M., Buch, R., Kale, L.: Runtime Coordinated Heterogeneous Tasks in Charm++.

In: Proceedings of the Second Internationsl Workshop on Extreme Scale Programming

Models and Middleware (2016).

7. Wu W., Bouteiller A., Bosilca G., Faverge M., Dongarra J.: Hierarchical DAG Scheduling

for Hybrid Distributed Systems. In: 29th IEEE International Parallel & Distributed Pro-

cessing Symposium (2014).

8. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing Locality and Inde-

pendence with Logical Regions. In: the International Conference on Supercomputing (SC

2012) (2012).

9. Malyshkin, V., Perepelkin, V.: LuNA Fragmented Programming System, Main Functions

and Peculiarities of Run-Time Subsystem. In: Parallel Computing Technologies. LNCS

6873, pp. 53–61 (2011).

10. Sterling, T., Anderson, M., Brodowicz, M.: A Survey: Runtime Software Systems for High

Performance Computing. Supercomputing Frontiers and Innovations: an International

Journal, 4(1), pp. 48–68. (2017). DOI: 10.14529/jsfi170103.

11. Thoman, P., Dichev, K., Heller, T. et al.: A taxonomy of task-based parallel programming

technologies for high-performance computing. The Journal of Supercomputing, 74(4), pp.

1422–1434. (2018). DOI: 10.1007/s11227-018-2238-4.

12. Valkovsky, V., Malyshkin, V.: Synthesis of parallel programs and systems on the basis of

computational models. Nauka, Novosibirak (1988).

13. Akhmed-Zaki, D., Lebedev, D., Perepelkin, V. J Supercomput (2018).

https://doi.org/10.1007/s11227-018-2710-1

14. Sapronov, I., Bykov, A.: Parallel pipelined algorithm. Atom 2009, no 44, pp 24–25 (2009)

(in Russian)

15. Joint Supercomputing Centre of Russian Academy of Sciences Official Site,

http://www.jscc.ru/, last accessed: 2019/04/01

https://www.ansys.com/products/fluids/ansys-fluent
https://doi.org/10.1007/s11227-018-2710-1

