
Automated GPU Support in LuNA Fragmented 

Programming System 

Belyaev Nikolay
1
 and Vladislav Perepelkin

1,2
□ 

1Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, 

Russia 

bl0ckzer01@gmail.com, perepelkin@ssd.sscc.ru 
2National Research University of Novosibirsk, Russia 

Abstract. The paper is devoted to the problem of reduction of complexity of 

development of numerical parallel programs for distributed memory computers 

with hybrid (CPU+GPU) computing nodes. The basic idea is to employ a high-

level representation of an application algorithm to allow its automated execu-

tion on multicomputers with hybrid nodes without a programmer having to do 

low-level programming. LuNA is a programming system for numerical algo-

rithms, which implements the idea, but only for CPU. In the paper we propose a 

LuNA language extension, as well as necessary run-time algorithms to support 

GPU utilization. For that a user only has to provide a limited number of compu-

tational GPU procedures using CUDA, while the system will take care of such 

associated low-level problems, as jobs scheduling, CPU-GPU data transfer, 

network communications and others. The algorithms developed and implement-

ed take advantage of concerning informational dependencies of an application 

and support automated tuning to available hardware configuration and applica-

tion input data 

Keywords: Hybrid multicomputers ∙ GPGPU ∙ Parallel programming automa-

tion ∙ Fragmented programming ∙ LuNA system. 

1 Introduction 

When implementing large-scale numerical models on a supercomputer one can signif-

icantly improve performance by utilizing both CPUs and GPUs available. Unfortu-

nately, development of such a program is often problematic due to necessity to dis-

tribute computational load between CPUs and GPUs, organize data transfer and com-

putations’ synchronization. The distribution depends on relative performance of CPUs 

and GPUs, RAM available, network topology and other architectural peculiarities of 

given hardware. Implementation of such a distribution is usually troublesome and 

requires skills in system parallel programming, thus impeding numerical programs 

development. 

Despite the fact that such system programming skills are not expected from appli-

cation programmers, their involvement is still necessary, because efficient workload 

distribution problem is far from being solved in general case. In particular, it requires 

mailto:bl0ckzer01@gmail.com


2 

an understanding of application’s data and computations structure and sometimes 

even understanding of peculiarities of the numerical model implemented (see [1] for 

an example). 

Automation of construction of numerical parallel programs, which efficiently uti-

lize available hardware, is a powerful way to hide the data distribution programming 

problem from application programmers, thus simplifying numerical programs devel-

opment. Nowadays there are different systems and tools, aimed at simplifying GPU 

utilization. 

OpenCL [2], for example, is an open standard and a library to support “kernel” de-

velopment, which can be executed on CPU, GPU or FPGA. OpenCL employs a C-

like language to define a kernel. Computational device is selected automatically, 

based on static analysis and profiling [3]. OpenCL is still a low-level programming 

tool, where a programmer has to program control manually. OpenCL also does not 

concern data locality of the application. 

OpenACC [4] offers compiler directives to denote “GPU parts” and an API (Ap-

plication Programmer Interface) to invoke them or transfer data. OpenACC does not 

concern application data locality, does not balance workload and only supports shared 

memory systems. DVMH [5] is similar to OpenACC, it allows tuning workload dis-

tribution for hybrid multicomputers, but does not provide dynamic load balancing 

 Charm++ [6] is a platform-independent programming system with a compiler and 

a run-time system. Charm++ program consists of “chares”, which can execute simul-

taneously and interact with each other. A chare can be assigned to GPU or CPU by a 

run-time system depending on the strategy, chosen by a programmer. 

It can be concluded, that different systems provide some automation of GPU usage, 

but either for a particular case, or at cost of a significant involvement of the pro-

grammer. This is caused by peculiarities of models these systems employ. 

A programming system LuNA [7] is being developed in Institute of Computational 

Mathematics and Mathematical Geophysics SB RAS. LuNA is aimed at automation 

of numerical parallel programs construction and consists of LuNA language, compiler 

and a run-time system. LuNA system was chosen for this work, because it is designed 

for automation of tuning program to hardware resources, which makes is useful to 

examine algorithms of CPU-GPU load distribution algorithms. This paper is devoted 

to an attempt to provide automated GPU support for LuNA system. 

2 LuNA-Program 

In LuNA an application program is represented as a set of computational fragments 

(CF) and a set of data fragments (DF). Each DF is an aggregated immutable piece of 

data (say, a subdomain of a numerical mesh at given time step or iteration). Each CF 

is an operation on DFs, which takes a number of DFs as inputs and produces values of 

a number of output DFs. Each CF is implemented by a conventional sequential proce-

dure without “side-effects”. LuNA-program consists of two parts: a number of se-

quential procedures in C++ and a description of sets of CFs and DFs in LuNA lan-



3 

guage. LuNA compiler translates programs into an internal representation, executable 

by LuNA run-time system. 

3 CPU and GPU Workload Distribution Algorithm with 

Automatic Data Refragmentation. 

The problem of workload distribution is formulated as follows. For each CF a device 

(CPU or GPU) must be assigned to be executed on. The goal is to reduce overall ap-

plication execution time, mainly by providing load balance of available devices and 

by saving CPU-GPU data transfer “bottleneck.” 

The proposed algorithm is based on the Rope-of Beads [8] (RoB) algorithm, em-

ployed in LuNA system. In the RoB algorithm each CF and DF has a number n as-

signed (0 ≤ n < L), where L is a parameter of the algorithm. Number n is called coor-

dinate on the [0; L) segment. More than one fragment can share the same coordinate. 

The segment [0; L) is split into a number of sub-segments, one sub-segment for each 

computational node. All the fragments, mapped to a sub-segment of a node, are con-

sidered to be assigned to the node. Dynamic load balancing is possible through re-

splitting the segment, causing CFs and DFs to migrate if their assignment has 

changed. 

In the proposed algorithm an additional split within one node is proposed. A sub-

segment of a node is split into three new parts. The fist part corresponds to CPU(s) of 

the node (the “CPU part”), the last part corresponds to GPU (the “GPU part”), and the 

middle part corresponds to fragments, stored in CPU memory, but executed on GPU 

(the “drag-through part”). For the drag-through part once a CF has to be executed, its 

input data are copied to GPU, then the CF is executed, and its output DFs are trans-

ferred to CPU, releasing occupied GPU memory (this allows running on GPU more 

CFs than fit in its memory). DFs of GPU and CPU parts never leave their devices in 

order to optimize CPU-GPU connection usage. 

The reasoning behind this splitting a sub-segment into three parts is the following. 

To save GPU-CPU traffic, each of the devices should have its part of computations 

(CPU and GPU parts). In order to achieve load balance GPU may require more work-

load, than its memory can hold. To handle this case the drag-through part of the sub-

segment is introduced. The drag-through workload occupies CPU memory, but is 

transferred in smaller portions to GPU for computations (trading off CPU-GPU 

bandwidth against CPU or GPU idle time). Although it is unclear, what proportions of 

parts 1, 2 and 3 would be the best for certain application and hardware, the optimum 

can be searched for (in particular, one or two parts can degenerate). 

To reduce run-time system overhead, bound with number of fragments, static data 

refragmentation is suggested to be combined with the proposed algorithm. The 

refragmentation is performed as follows: All the GPU fragments (GPU part) are 

merged into one, all the CPU fragments (CPU part) are resplit into a number of frag-

ments equal (or proportional) to the number of CPU cores, and the drag-through part 

is resplit into a number of fragments (portion size), which is a parameter of the pro-

posed algorithm. Such refragmentation requires, that involved C++ procedures fit the 



4 

“merge requirements”, i.e. processed domain size must be a parameter of the proce-

dures, which is annotated in code by the programmer. 

The proposed algorithm concerns informational dependencies and data structure of 

the application algorithm (this is inherited from the original RoB algorithm). It can be 

tuned to properties of an application and hardware configuration using the parameters 

of the proposed algorithm. The parameters can be defined automatically on the basis 

of static analysis, hardware benchmarking and/or application profiling, but this is out 

of scope of the paper. The drawback of the proposed algorithm is the 1D refragment-

able decomposition requirement. 

4 Testing 

The proposed algorithm was implemented as a part of LuNA programming system. 

To study performance characteristics of the algorithm a number of tests was per-

formed. All the tests were conducted on single computing node with 2×Xeon 5670 (3 

GHz) CPUs and GPU Nvidia Tesla M 2090. The application tested is a model finite 

scheme solver, where the number of computations per single data unit is a parameter. 

This parameter (called load) is used to represent different application classes with 

different volume of computations per data, which is one of the key properties of an 

algorithm. 

 

Fig. 1. Program execution time dependency on the amount of computations, assigned to CPU, 

for different computation-per-data intensity 

The first test is devoted to finding an optimal CPU/GPU workload proportion 

(CPU workload percentage is the X axis). The drag-through parameter is degenerated 

to zero. It can be seen in Fig. 1, the optimal time is achieved when both CPU and 

GPU are used, despite the fact, that such execution requires extra CPU-GPU commu-



5 

nications, as compared to CPU-only or GPU-only execution. Note, that the optimal 

proportion is different for different load value. 

The second test is devoted to obtaining optimal value of the drag-through parame-

ter. The X axis corresponds to different value of the parameter. It can be seen from 

Fig. 2 that optimal drag-through parameter is non-zero, which is an evidence of use-

fulness of the dragging-through part of the proposed algorithm. It also can be seen, 

that the optimal value of the parameter depends on the load parameter. It means, that 

different applications would require different value of the drag-through parameter. 

 

 

Fig. 2. Program execution time dependency on amount of the “middle-part” DFs for different 

computation-per-data intensity. 

It is worth mentioning, that during the testing the absolute performance achieved is 

close to that of manually developed programs, which means that the conclusions 

made are essential to the proposed algorithm, and are not significantly affected by 

foreign factors, such as LuNA run-time system overhead. 

5 Conclusion 

An algorithm to distribute workload to CPUs and GPUs of a multicomputer is pro-

posed. The algorithm possesses parameters, capable of tuning to application and 

hardware peculiarities to reduce program execution time. The algorithm was imple-

mented as a part of LuNA system and performance tests were performed. The tests 

showed that the algorithm proposed allows automated efficient usage of hybrid 

(GPU+CPU) computing nodes of a multicomputer. The tests also showed, that the 

parameters of the proposed algorithm are essential. 



6 

Future work supposes solution of the problem of automatic (or at least automated) 

definition of parameters of the algorithm to allow LuNA tune to given hardware con-

figuration and application peculiarities automatically. 

References 

1. Kraeva, M.A., Malyshkin, V.E. Assembly Technology for Parallel Realiza-

tion of Numerical Models on MIMD-Multicomputers. In the Int. Journal on 

Future Generation Computer Systems, Elsevier Science. Vol. 17, No. 6, pp 

755–765 (2001) 

2. https://www.khronos.org/opencl/ (accessed May 2017) 

3. Wen, Y., Wang, Z., O'Boyle, M. F. P. Smart multi-task scheduling for 

OpenCL programs on CPU/GPU heterogeneous platforms. 21st International 

Conference on High Performance Computing (HiPC). pp. 1–10 (2014) 

4. http://www.openacc.org/ (accessed May 2017) 

5. Bakhtin, V.A., Chetverushkin, B. N., Krukov, V.A., Shilnikov, E. V. Exten-

sion of the DVM parallel programming model for clusters with heterogene-

ous nodes. DOKLADY MATHEMATICS, Moscow: Pleiades Publishing, 

Ltd, Vol. 84, Issue 3, P. 879-881 (2011) 

6. http://charm.cs.illinois.edu/research/charm (accessed May 2017) 

7. Malyshkin, V.E., Perepelkin, V.A. LuNA fragmented programming system, 

main functions and peculiarities of run-time subsystem. In: Proc. of the 11th 

conference on parallel computing technologies, LNCS 6873. Springer, New 

York, pp 53–61 (2011) 

8. Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A. Distributed Algorithm of 

Data Allocation in the Fragmented Programming System LuNA. In Proc 

13th International Conference on Parallel Computing Technologies. LNCS 

9251. Springer. pp. 80–85. DOI: 10.1007/978-3-319-21909-7_8 (2015) 

https://www.khronos.org/opencl/
http://www.openacc.org/
http://charm.cs.illinois.edu/research/charm

