
Trace-Based Optimization of Fragmented Programs

Execution in LuNA System

Victor Malyshkin
1,2,3[0000-0002-7874-3686]

 and Vladislav Perepelkin
1,2[0000-0002-6998-4525]

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk,

Russia
2 Novosibirsk State University, Novosibirsk, Russia

3 Novosibirsk State Technical University, Novosibirsk, Russia

perepelkin@ssd.sscc.ru

Abstract. Automatic construction of high performance distributed numerical

simulation programs is used to reduce complexity of distributed parallel pro-

grams development and to improve code efficiency as compared to an average

manual development. Development of such means, however, is challenging in

general case, that’s why a variety of different languages, systems and tools for

parallel programs construction exist and evolve. Program tracing (i.e. journaling

execution acts of the program) is a valuable source of information, which can

be used to optimize efficiency of constructed programs for particular execution

conditions and input data peculiarities. One of the optimization techniques is

trace playback, which consists in step-by-step reproduction of the trace. This al-

lows reducing run-time overhead, which is relevant for runtime system-based

tools. The experimental results demonstrate suitability of the technique for a

range of applications.

Keywords: Automatic Program Construction, Fragmented Programming Tech-

nology, LuNA System, Trace Playback.

1 Introduction

Development of high performance scientific parallel programs for supercomputers is

often complicated and hard due to the necessity to decompose data and computations,

organize parallel data processing, provide non-functional properties of the programs.

Such properties may include efficiency (execution time, memory consumption, net-

work load, etc.), static or dynamic workload balancing, fault tolerance, checkpointing,

etc. All this requires in-depth knowledge of hardware architecture, skill in parallel

programming, familiarity with appropriate parallel programming methods and tools.

This makes manual programming troublesome for an average supercomputer user,

who is an expert in the subject domain, not in system parallel programming. Usage of

parallel programming automation systems, languages and tools allows to significantly

reduce complexity of parallel programming, improve quality of produced programs

and reduce knowledge and skill requirements a programmer has to possess.

2

In general automatic construction of an efficient parallel program is algorithmically

hard, which why no effective general approach is expected to exist, so a diversity of

various approaches, heuristics, languages and programming systems are being con-

stantly developed to support parallel programming automation in different particular

cases and subject domains. One of the promising approaches of parallel programs

automatic optimization is trace-based optimization. This approach assumes that a

program is first run on some characteristic input data, and its performance is being

recorded as a trace of events (computational, communicational, etc.). The trace is then

analyzed to extract quantitative information and pass it to a programming system

(compiler, interpreter, etc.) to produce more efficient code. This is similar to profile-

based optimization, except that a profile contains statistical information, while a trace

contains the full log of significant events. In particular, trace can be used to reproduce

the computation process recorded (“trace playback”), which can be more efficient

than the normal program execution if the latter involves dynamic decision-making or

other overhead, which can be omitted with trace playback. This, however, is not al-

ways possible, because change in input data or the computing system state may cause

inconsistent execution. This paper is devoted to implementation of this idea in LuNA

system for distributed parallel programs construction [1].

The rest of the paper is organized as follows. Section 2 contains a brief necessary

introduction into LuNA system computational model in comparison with other sys-

tems. Section 3 describes how trace gathering and playback are implemented in Lu-

NA. Section 4 presents results of the experimental study.

2 Trace Playback in LuNA System

2.1 LuNA System

LuNA (Language for Numerical Algorithms) is a language and a system for automat-

ic construction of numerical distributed parallel programs for distributed memory

parallel computers (multicomputers). It is an academic project of the Institute of

Computational Mathematics and Mathematical Geophysics of the Siberian Branch of

Russian Academy of Sciences. The system is based on the theory of structured syn-

thesis of parallel programs [2], and its purpose is to support the active knowledge

technology [3]. LuNA program is a high-level coarse-grained explicitly-parallel de-

scription of a numerical algorithm, which is basically a description of a bipartite ori-

ented graph of computational fragments (CFs) and data fragments (DFs). DF is an

immutable piece of data, the result of data decomposition. Each CF is a conventional

subroutine call, which takes a number of DFs as inputs to compute values of a number

of other DFs (these production-consuming relations correspond to arcs in the graph).

So, LuNA program defines a set of informationally dependent tasks (CFs), which

have to be executed in an order, which satisfies the dependencies. To execute such

program LuNA has to distribute CFs to computing nodes, perform DFs transfer from

producers to consumers and execute CFs after all their input DFs are available at the

node. Efficiency of such execution is conditioned by the CFs distribution and execu-

tion order, by DFs network transfer delays and by the run-time system overhead. As

3

our previous works show [4–11] the performance of LuNA programs is 1-100 times

less than that of manually developed programs, depending on the subject domain. We

continue to improve LuNA system algorithms to provide better performance for prac-

tical application classes, and this work is one of such improvements. More details on

LuNA system can be found in [1] and in its public repository
1
.

2.2 Trace Playback in LuNA System

Since LuNA program execution consists eventually of CFs executions, the trace in-

formation includes CF execution start and end times and the node on which the CF

was executed. This information is sufficient to completely reproduce the computation

of LuNA program. Once the trace is recorded, its playback on each computing node

may be organized as follows:

1. Pick the earliest unexecuted CF a from the trace (on the node).

2. For each input DF x of the CF a find in the trace the CF b, which produced it.

3. If CF b was executed on the same computing node where CF a was executed,

then DF x is available on the node; otherwise receive DF x as a message from

CF b’s node.

4. Invoke the conventional subroutine, related to CF a with input DFs passed to

it.

5. For each output DF x of the CF a find all CFs c, which take DF x as input. If

CF c is located on the same node as CF a, then store DF x locally, otherwise

send DF x as a message to CF c’s node.

This is an essential scheme, although some more or less obvious tuning should be

done in practical implementation. For example, if multiple CFs are located on the

same computing node and take the same DF as input, then only one copy of the DF

should be passed via network. Note that trace playback can be performed in multiple

threads for each node (normal LuNA operation is also multi-threaded on each compu-

ting node).

This scheme misses the garbage collection, which takes place with normal LuNA

operation. It can be straightforwardly implemented by recording to the trace the rela-

tive time point where DF deallocation took place. However, this appeared to be re-

dundant, since all actual DFs consumptions are explicitly seen in the trace, thus the

DF deallocation is performed as soon as last consumption on the node has occurred.

With trace playback the run-time overhead is reduced to the minimum. No decision

making on CFs distribution, CFs execution ordering or DFs garbage collection is

needed. In particular, LuNA dynamically balances workload by redistributing CFs to

computing nodes, but only a final location where execution took place matters. All

multi-hop DF transfers become single-hop transfers. Reduction of most kinds of

overhead is the main source of performance improvement for trace playback as com-

pared to normal LuNA operation.

Note, that LuNA programs execution is non-deterministic in sense of CFs distribu-

tion and execution ordering, and in sense of timings. Even minor factors (such as

1 https://gitlab.ssd.sscc.ru/luna/luna

4

network delays or external CPU load) may influence the decisions LuNA system

makes and implements. Dynamic load balancing is especially sensible to such factors.

The trace, however, is much more deterministic, since most events are rigidly fixed.

3 Discussion and Related Works

3.1 Analysis and Discussion

The main drawback of the approach is that the set of CFs may depend on input da-

ta. As long as the task graph (the set of CFs) persists trace playback produces valid

execution for any input data. But, for example, if the number of loop iterations de-

pends on input data, then trace playback may be erroneous. This drawback can be

partially compensated by two factors. First, there are a lot of applications where tasks

graph does not depend on input data (e.g. dense linear algebra operations). Second,

the fact that the task graph appeared to be different for given input can be detected

automatically. In particular, in LuNA there are three operators, which can produce

data-dependent task graphs: if, for and while. Each of the operators can be sup-

plied with straightforward checks, which will ensure that each if condition was re-

solved to the same true/false value and that every for and while operator has

the same iteration range. So, trace playback engine can inform the user on unsuccess-

ful playback (rather than silently perform erroneous execution) and suggest normal

program execution.

To some extent this drawback can be overcome further. E.g. some kind of induc-

tion techniques can be used to stack for or while loop iterations into a parametric

range-independent form. For the if operator both then and else branches can be

traced at first precedent, and after that the execution of both branches can be done via

trace playback. Study of these possibilities is out of the scope of the paper.

Another drawback of the approach is that no decisions on CFs distribution and ex-

ecution order are made – only the decisions made by LuNA system in the traced run

are recorded and reproduced. These decisions may be not good for a number of rea-

sons. E.g., hardware configuration or its external load may be different; CF execution

time may depend on input data; absence of run-time system overhead may influence

timings, etc. The decisions themselves, that LuNA system has made, can be not good,

because LuNA system algorithms are not perfect. This brings us to the idea of trace

optimization and tuning before doing the playback. Study of the idea is beyond the

current work, but a brief overview of the problem can be given. Firstly, the trace can

be analyzed for work imbalance or inefficient CFs execution order. Secondly, any CF

can be reassigned to another node with no risk of bringing error to the execution.

Also, CFs execution can be reordered unless informational dependencies are violated.

Such trace transformations can either eliminate work imbalance or retarget the trace

to another hardware configuration (computing nodes number, network topology, rela-

tive nodes performance, etc.).

Besides trace optimization, trace execution engine can be improved. For example,

the above mentioned thread pool-based execution is one of such possible optimiza-

tions. More dynamic improvements can be made. For example, dynamic workload

5

balancing may be employed to eliminate work imbalance that occurs during trace

playback. Study of these possibilities is also out of the scope of the paper.

3.2 Related Works

Trace playback is practical in LuNA system because of the computational model it

employs. In particular, the “computational” part of a LuNA program is separate from

distributed management logic, which allows to replace the latter with a trace play-

back engine. There are other programming languages and systems, where trace play-

back may be of use. For manually developed conventional distributed parallel pro-

grams trace playback appears to be inapplicable, since it is impossible to distinguish

the essential computational part from the rest of the code, which organizes parallel

computations, communications and data storage.

Specialized computational models, such as the map-reduce model [12,13], allow to

distinguish the computational part and computations structure since it is explicitly

formulated in the code. This, in turn, allows to trace execution and playback the trace.

For example, such systems implement dynamic workload balancing, which causes

some run-time overhead. It can be reduced by the trace playback technique. Of

course, this makes sense for a series of computations where imbalance is known to be

the same. The rest of overhead is usually negligible.

Task-based systems, such as Charm++ [14] or OpenTS [15] allow trace playback

mostly the same way it is possible in LuNA system. In Charm++, however, it may be

harder to implement, because chares (Charm++ decomposition units) may behave

differently depending on the order in which they receive messages from other chares.

To allow safe trace playback some additional constraints to chare codes may be re-

quired.

For systems with explicit program behavior control, such as PaRSEC [16] or Le-

gion [17] trace playback seems to be as easily implemented as in LuNA, since the

computational part is explicitly formulated in the computational model.

Some possibilities of trace playback exist in systems for automated serial code par-

allelization, such as DVM-H [18]. Here a serial code is annotated (either manually or

automatically) with “parallelization pragmas”, and a parallel program is generated

automatically. In particular, a dynamic workload balancing mechanism may be in-

cluded into the generated program. Code annotations allow identifying the computa-

tional part, and since the distributed code is generated automatically, it can be instru-

mented to trace events, necessary to perform the playback.

It can be concluded, that trace playback is a reasonable technique for programming

languages, systems and tools, which employ run-time systems, or at least provide

some dynamic properties (such as dynamic load balancing) at cost of some overhead.

4 Experiments

To playback a trace a series of actions to perform is generated for each computing

node. Possible actions are invocation of a serial subroutine, DF transfer to another

6

node and DF deletion. Such series is easily constructed from trace. Implementation of

the series of actions on each node causes the trace playback.

The naïve way to implement trace playback is to generate the series of actions as a

conventional (e.g. MPI-based) program. Such an approach possesses minimal possi-

ble overhead. In practice, however, such source code listing grows large and takes too

much time to be compiled into binary (e.g. hours of compilation for a large program).

To overcome this issue the series of events was encoded into a binary file (to reduce

size), and a trivial interpreter was developed, which decodes the file and performs the

actions using a worker thread pool on each node. This decoding does add some over-

head, but it is usually negligible due to coarse granularity of CFs. A separate thread

was dedicated to receiving messages from other nodes.

For experimental performance evaluation a Particle-In-Cell application for self-

gravitating dust-cloud simulation [19] was used as an example of a rather complicated

real supercomputing-targeted application. Tests were conducted on MVS-10p cluster

of Joint Supercomputing Center of Russian Academy of Sciences
2
. The testing was

conducted for various parameters (see Table 1) to investigate performance in different

conditions.

Table 1. Experimental results

Parameters Execution time (sec.)

Mesh size Particles Cores MPI LuNA-TB LuNA

100
3
 10

6
 64 5.287 13.69 355.5

150
3
 10

6
 64 18.896 31.088 732.833

150
3
 10

7
 64 23.594 111.194 2983

150
3
 10

7
 125 23.352 118.32 3086.411

150
3
 10

6
 343 33.697 39.651 1008.655

Two programs, developed by S. Kireev for [20], which implement the same algo-

rithm, were used. The first program is a conventional C++ distributed parallel pro-

gram, based on Message Passing Interface (MPI). The second one is a LuNA pro-

gram. Execution time for these programs is shown in Table 1. There is also a column

labeled LuNA-TB. This is the execution time of the same LuNA program, but using

the trace-playback technique. The MPI program can be considered as a reference

point, its efficiency is what one can expect as a result of manual development of an

experienced applied programmer. The LuNA program is an automatically constructed

program using a general approach, and its efficiency is expectedly much lower, than

that of the MPI program. And the LuNA-TB is somewhere in the middle, an automat-

ically generated program using the particular trace playback approach.

The main result of the testing is that LuNA-playback indeed significantly speeds

up execution of LuNA programs. This confirms that the trace playback is a useful

technique for optimizing efficiency of automatically constructed parallel programs. Its

efficiency is still lower than that of the MPI program, but this is obviously a practical-

ly usable result, considering that it is obtained automatically.

2 http://www.jscc.ru

7

It can also be seen from Table 1 that trace playback approach is more advantageous

for programs with finer granularity, where fragments are of lesser size. The advantage

is the bigger the more computing nodes are involved in computation. This is also

expected, since dynamic decentralized algorithms employed in LuNA produce signif-

icant overhead, which is cut off with trace playback.

5 Conclusion

The trace playback technique is investigated as a distributed programs optimization

technique for parallel programming automation systems. Trace playback was imple-

mented for LuNA system for automatic numerical parallel programs construction. The

experiments showed a significant improvement of the efficiency of constructed pro-

grams. Possible improvements of the technique, aimed at overcoming its drawbacks

are briefly discussed. It can be concluded that the trace playback technique is practical

for high performance distributed parallel programs construction automation, which

can be used automatically (along with other particular system algorithms and heuris-

tics). In future we plan to further investigate the approach within LuNA system to

widen the application class this technique is applicable to.

The work was supported by the budget project of the ICMMG SB RAS No. 0251-

2021-0005.

References

1. Malyshkin V.E., Perepelkin V.A. LuNA Fragmented Programming System, Main Func-

tions and Peculiarities of Run-Time Subsystem. In: Parallel Computing Technologies.

PaCT 2011. Lecture Notes in Computer Science, vol 6873. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-23178-0_5 (2011)

2. V.A. Valkovsky, V.E. Malyshkin.: Synthesis of Parallel Programs and Systems on the Ba-

sis of Computational Models (In Russian). Nauka, Novosibirsk (1988)

3. Malyshkin V. Active Knowledge, LuNA and Literacy for Oncoming Centuries. In: Bodei

C., Ferrari G., Priami C. (eds) Programming Languages with Applications to Biology and

Security. Lecture Notes in Computer Science, vol 9465. Springer, Cham.

https://doi.org/10.1007/978-3-319-25527-9_19 (2015)

4. Akhmed-Zaki, D., Lebedev, D., Malyshkin, V., Perepelkin, V. Automated construction of

high performance distributed programs in LuNA system // 15th International Conference

on Parallel Computing Technologies, PaCT 2019; Almaty; Kazakhstan. LNCS 11657.

Springer, 2019. pp. 3-9. DOI: 10.1007/978-3-030-25636-4_1.

5. Akhmed-Zaki, D., Lebedev, D., Perepelkin, V. Implementation of a 3D model heat equa-

tion using fragmented programming technology // J Supercomput. 2019. pp. 7827-7832.

DOI: 10.1007/s11227-018-2710-1.

6. B. Daribayev, V. Perepelkin, D. Lebedev, D. Akhmed-Zaki. Implementation of the Two-

Dimensional Elliptic Equation Model in LuNA Fragmented Programming System // 2018

IEEE 12th International Conference on Application of Information and Communication

Technologies (AICT). 2018. pp. 1-4.

7. Nikolay B., Perepelkin. V. Automated GPU Support in LuNA Fragmented Programming

System // Parallel Computing Technologies. PaCT 2017. Lecture Notes in Computer Sci-

https://doi.org/10.1007/978-3-642-23178-0_5
https://doi.org/10.1007/978-3-319-25527-9_19

8

ence, vol 10421.. Springer, Cham, 2017. pp. 272-277. DOI: 10.1007/978-3-319-62932-

2_26.

8. Malyshkin. V., Perepelkin. V., Schukin G. Scalable Distributed Data Allocation in LuNA

Fragmented Programming System // Journal of Supercomputing, S.I.: Parallel Computing

Technologies - 2017. Springer, 2017. pp. 1-7. DOI: 10.1007/s11227-016-1781-0.

9. V.E. Malyshkin, V.A. Perepelkin, A.A. Tkacheva. Control Flow Usage to Improve Per-

formance of Fragmented Programs Execution // In Proc 13th International Conference on

Parallel Computing Technologies. LNCS 9251. Springer, 2015. pp. 86-90. DOI:

10.1007/978-3-319-21909-7_9.

10. Victor E. Malyshkin, Vladislav A. Perepelkin, Georgy A. Schukin. Distributed Algorithm

of Data Allocation in the Fragmented Programming System LuNA // In Proc 13th Interna-

tional Conference on Parallel Computing Technologies. LNCS 9251. Springer, 2015. pp.

80-85. DOI: 10.1007/978-3-319-21909-7_8.

11. Norma Alias, Sergey Kireev. Fragmentation of IADE Method Using LuNA System //

PaCT-2017 proceedings, LNCS 10421, Springer, 2017, P.85-93. DOI: 10.1007/978-3-319-

62932-2_7

12. Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters / OSDI'04: Sixth Symposium on Operating System Design and Implementation,

San Francisco, CA, 2004. p 137-150.

13. Tom White. Hadoop: The Definitive Guide: Storage and Analysis at Internet Scale /

O'Reilly Media; 4th edition (April 21, 2015), 756 p. ISBN-13 : 978-1491901632

14. Kale, Laxmikant V. and Bhatele, Abhinav. Parallel Science and Engineering Applications:

The Charm++ Approach / Taylor & Francis Group, CRC Press. 2013. ISBN

9781466504127

15. Moskovsky A., Roganov V., Abramov S. (2007) Parallelism Granules Aggregation with

the T-System. In: Malyshkin V. (eds) Parallel Computing Technologies. PaCT 2007. Lec-

ture Notes in Computer Science, vol 4671. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-540-73940-1_30

16. George Bosilca, Aurélien Bouteiller, Anthony Danalis, Mathieu Faverge, Thomas Hérault,

and Jack Dongarra. 2013. PaRSEC: A programming paradigm exploiting heterogeneity for

enhancing scalability. Computing in Science and Engineering 99 (2013), 1.

17. Michael Bauer, Sean Treichler, Elliott Slaughter and Alex Aiken. Legion: expressing lo-

cality and independence with logical regions // onference on High Performance Computing

Networking, Storage and Analysis, SC'12, Salt Lake City, UT, USA, November 11 - 15,

2012. 10.1109/SC.2012.71

18. N.A. Kataev, A.S. Kolganov. The experience of using DVM and SAPFOR systems in semi

automatic parallelization of an application for 3D modeling in geophysics // The Journal of

Supercomputing, US: Springer, 2018, P. 1-11

19. Kireev S. A parallel 3D code for simulation of self-gravitating gas-dust systems. InInterna-

tional Conference on Parallel Computing Technologies 2009 Aug 31 (pp. 406-413).

Springer, Berlin, Heidelberg.

20. Belyaev N., Kireev S. (2019) LuNA-ICLU Compiler for Automated Generation of Itera-

tive Fragmented Programs. In: Malyshkin V. (eds) Parallel Computing Technologies.

PaCT 2019. Lecture Notes in Computer Science, vol 11657. Springer, Cham.

https://doi.org/10.1007/978-3-030-25636-4_2

https://doi.org/10.1007/978-3-540-73940-1_30

