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Abstract. Automatic construction of high performance distributed numerical 

simulation programs is used to reduce complexity of distributed parallel pro-

grams development and to improve code efficiency as compared to an average 

manual development. Development of such means, however, is challenging in 

general case, that’s why a variety of different languages, systems and tools for 

parallel programs construction exist and evolve. Program tracing (i.e. journaling 

execution acts of the program) is a valuable source of information, which can 

be used to optimize efficiency of constructed programs for particular execution 

conditions and input data peculiarities. One of the optimization techniques is 

trace playback, which consists in step-by-step reproduction of the trace. This al-

lows reducing run-time overhead, which is relevant for runtime system-based 

tools. The experimental results demonstrate suitability of the technique for a 

range of applications. 

Keywords: Automatic Program Construction, Fragmented Programming Tech-

nology, LuNA System, Trace Playback. 

1 Introduction 

Development of high performance scientific parallel programs for supercomputers is 

often complicated and hard due to the necessity to decompose data and computations, 

organize parallel data processing, provide non-functional properties of the programs. 

Such properties may include efficiency (execution time, memory consumption, net-

work load, etc.), static or dynamic workload balancing, fault tolerance, checkpointing, 

etc. All this requires in-depth knowledge of hardware architecture, skill in parallel 

programming, familiarity with appropriate parallel programming methods and tools. 

This makes manual programming troublesome for an average supercomputer user, 

who is an expert in the subject domain, not in system parallel programming. Usage of 

parallel programming automation systems, languages and tools allows to significantly 

reduce complexity of parallel programming, improve quality of produced programs 

and reduce knowledge and skill requirements a programmer has to possess. 
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In general automatic construction of an efficient parallel program is algorithmically 

hard, which why no effective general approach is expected to exist, so a diversity of 

various approaches, heuristics, languages and programming systems are being con-

stantly developed to support parallel programming automation in different particular 

cases and subject domains. One of the promising approaches of parallel programs 

automatic optimization is trace-based optimization. This approach assumes that a 

program is first run on some characteristic input data, and its performance is being 

recorded as a trace of events (computational, communicational, etc.). The trace is then 

analyzed to extract quantitative information and pass it to a programming system 

(compiler, interpreter, etc.) to produce more efficient code. This is similar to profile-

based optimization, except that a profile contains statistical information, while a trace 

contains the full log of significant events. In particular, trace can be used to reproduce 

the computation process recorded (“trace playback”), which can be more efficient 

than the normal program execution if the latter involves dynamic decision-making or 

other overhead, which can be omitted with trace playback. This, however, is not al-

ways possible, because change in input data or the computing system state may cause 

inconsistent execution. This paper is devoted to implementation of this idea in LuNA 

system for distributed parallel programs construction [1]. 

The rest of the paper is organized as follows. Section 2 contains a brief necessary 

introduction into LuNA system computational model in comparison with other sys-

tems. Section 3 describes how trace gathering and playback are implemented in Lu-

NA. Section 4 presents results of the experimental study. 

2 Trace Playback in LuNA System 

2.1 LuNA System 

LuNA (Language for Numerical Algorithms) is a language and a system for automat-

ic construction of numerical distributed parallel programs for distributed memory 

parallel computers (multicomputers). It is an academic project of the Institute of 

Computational Mathematics and Mathematical Geophysics of the Siberian Branch of 

Russian Academy of Sciences. The system is based on the theory of structured syn-

thesis of parallel programs [2], and its purpose is to support the active knowledge 

technology [3]. LuNA program is a high-level coarse-grained explicitly-parallel de-

scription of a numerical algorithm, which is basically a description of a bipartite ori-

ented graph of computational fragments (CFs) and data fragments (DFs). DF is an 

immutable piece of data, the result of data decomposition. Each CF is a conventional 

subroutine call, which takes a number of DFs as inputs to compute values of a number 

of other DFs (these production-consuming relations correspond to arcs in the graph). 

So, LuNA program defines a set of informationally dependent tasks (CFs), which 

have to be executed in an order, which satisfies the dependencies. To execute such 

program LuNA has to distribute CFs to computing nodes, perform DFs transfer from 

producers to consumers and execute CFs after all their input DFs are available at the 

node. Efficiency of such execution is conditioned by the CFs distribution and execu-

tion order, by DFs network transfer delays and by the run-time system overhead. As 
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our previous works show [4–11] the performance of LuNA programs is 1-100 times 

less than that of manually developed programs, depending on the subject domain. We 

continue to improve LuNA system algorithms to provide better performance for prac-

tical application classes, and this work is one of such improvements. More details on 

LuNA system can be found in [1] and in its public repository
1
. 

2.2 Trace Playback in LuNA System 

Since LuNA program execution consists eventually of CFs executions, the trace in-

formation includes CF execution start and end times and the node on which the CF 

was executed. This information is sufficient to completely reproduce the computation 

of LuNA program. Once the trace is recorded, its playback on each computing node 

may be organized as follows: 

1. Pick the earliest unexecuted CF a from the trace (on the node). 

2. For each input DF x of the CF a find in the trace the CF b, which produced it. 

3. If CF b was executed on the same computing node where CF a was executed, 

then DF x is available on the node; otherwise receive DF x as a message from 

CF b’s node. 

4. Invoke the conventional subroutine, related to CF a with input DFs passed to 

it. 

5. For each output DF x of the CF a find all CFs c, which take DF x as input. If 

CF c is located on the same node as CF a, then store DF x locally, otherwise 

send DF x as a message to CF c’s node. 

This is an essential scheme, although some more or less obvious tuning should be 

done in practical implementation. For example, if multiple CFs are located on the 

same computing node and take the same DF as input, then only one copy of the DF 

should be passed via network. Note that trace playback can be performed in multiple 

threads for each node (normal LuNA operation is also multi-threaded on each compu-

ting node). 

This scheme misses the garbage collection, which takes place with normal LuNA 

operation. It can be straightforwardly implemented by recording to the trace the rela-

tive time point where DF deallocation took place. However, this appeared to be re-

dundant, since all actual DFs consumptions are explicitly seen in the trace, thus the 

DF deallocation is performed as soon as last consumption on the node has occurred. 

With trace playback the run-time overhead is reduced to the minimum. No decision 

making on CFs distribution, CFs execution ordering or DFs garbage collection is 

needed. In particular, LuNA dynamically balances workload by redistributing CFs to 

computing nodes, but only a final location where execution took place matters. All 

multi-hop DF transfers become single-hop transfers. Reduction of most kinds of 

overhead is the main source of performance improvement for trace playback as com-

pared to normal LuNA operation. 

Note, that LuNA programs execution is non-deterministic in sense of CFs distribu-

tion and execution ordering, and in sense of timings. Even minor factors (such as 

                                                           
1  https://gitlab.ssd.sscc.ru/luna/luna 



4 

network delays or external CPU load) may influence the decisions LuNA system 

makes and implements. Dynamic load balancing is especially sensible to such factors. 

The trace, however, is much more deterministic, since most events are rigidly fixed. 

3 Discussion and Related Works 

3.1 Analysis and Discussion 

The main drawback of the approach is that the set of CFs may depend on input da-

ta. As long as the task graph (the set of CFs) persists trace playback produces valid 

execution for any input data. But, for example, if the number of loop iterations de-

pends on input data, then trace playback may be erroneous. This drawback can be 

partially compensated by two factors. First, there are a lot of applications where tasks 

graph does not depend on input data (e.g. dense linear algebra operations). Second, 

the fact that the task graph appeared to be different for given input can be detected 

automatically. In particular, in LuNA there are three operators, which can produce 

data-dependent task graphs: if, for and while. Each of the operators can be sup-

plied with straightforward checks, which will ensure that each if condition was re-

solved to the same true/false value and that every for and while operator has 

the same iteration range. So, trace playback engine can inform the user on unsuccess-

ful playback (rather than silently perform erroneous execution) and suggest normal 

program execution. 

To some extent this drawback can be overcome further. E.g. some kind of induc-

tion techniques can be used to stack for or while loop iterations into a parametric 

range-independent form. For the if operator both then and else branches can be 

traced at first precedent, and after that the execution of both branches can be done via 

trace playback. Study of these possibilities is out of the scope of the paper. 

Another drawback of the approach is that no decisions on CFs distribution and ex-

ecution order are made – only the decisions made by LuNA system in the traced run 

are recorded and reproduced. These decisions may be not good for a number of rea-

sons. E.g., hardware configuration or its external load may be different; CF execution 

time may depend on input data; absence of run-time system overhead may influence 

timings, etc. The decisions themselves, that LuNA system has made, can be not good, 

because LuNA system algorithms are not perfect. This brings us to the idea of trace 

optimization and tuning before doing the playback. Study of the idea is beyond the 

current work, but a brief overview of the problem can be given. Firstly, the trace can 

be analyzed for work imbalance or inefficient CFs execution order. Secondly, any CF 

can be reassigned to another node with no risk of bringing error to the execution. 

Also, CFs execution can be reordered unless informational dependencies are violated. 

Such trace transformations can either eliminate work imbalance or retarget the trace 

to another hardware configuration (computing nodes number, network topology, rela-

tive nodes performance, etc.). 

Besides trace optimization, trace execution engine can be improved. For example, 

the above mentioned thread pool-based execution is one of such possible optimiza-

tions. More dynamic improvements can be made. For example, dynamic workload 
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balancing may be employed to eliminate work imbalance that occurs during trace 

playback. Study of these possibilities is also out of the scope of the paper. 

3.2 Related Works 

Trace playback is practical in LuNA system because of the computational model it 

employs. In particular, the “computational” part of a LuNA program is separate from 

distributed management logic, which allows to replace the latter with a trace  play-

back engine. There are other programming languages and systems, where trace play-

back may be of use. For manually developed conventional distributed parallel pro-

grams trace playback appears to be inapplicable, since it is impossible to distinguish 

the essential computational part from the rest of the code, which organizes parallel 

computations, communications and data storage. 

Specialized computational models, such as the map-reduce model [12,13], allow to 

distinguish the computational part and computations structure since it is explicitly 

formulated in the code. This, in turn, allows to trace execution and playback the trace. 

For example, such systems implement dynamic workload balancing, which causes 

some run-time overhead. It can be reduced by the trace playback technique. Of 

course, this makes sense for a series of computations where imbalance is known to be 

the same. The rest of overhead is usually negligible. 

Task-based systems, such as Charm++ [14] or OpenTS [15] allow trace playback 

mostly the same way it is possible in LuNA system. In Charm++, however, it may be 

harder to implement, because chares (Charm++ decomposition units) may behave 

differently depending on the order in which they receive messages from other chares. 

To allow safe trace playback some additional constraints to chare codes may be re-

quired. 

For systems with explicit program behavior control, such as PaRSEC [16] or Le-

gion [17] trace playback seems to be as easily implemented as in LuNA, since the 

computational part is explicitly formulated in the computational model. 

Some possibilities of trace playback exist in systems for automated serial code par-

allelization, such as DVM-H [18]. Here a serial code is annotated (either manually or 

automatically) with “parallelization pragmas”, and a parallel program is generated 

automatically. In particular, a dynamic workload balancing mechanism may be in-

cluded into the generated program. Code annotations allow identifying the computa-

tional part, and since the distributed code is generated automatically, it can be instru-

mented to trace events, necessary to perform the playback. 

It can be concluded, that trace playback is a reasonable technique for programming 

languages, systems and tools, which employ run-time systems, or at least provide 

some dynamic properties (such as dynamic load balancing) at cost of some overhead. 

4 Experiments 

To playback a trace a series of actions to perform is generated for each computing 

node. Possible actions are invocation of a serial subroutine, DF transfer to another 
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node and DF deletion. Such series is easily constructed from trace. Implementation of 

the series of actions on each node causes the trace playback. 

The naïve way to implement trace playback is to generate the series of actions as a 

conventional (e.g. MPI-based) program. Such an approach possesses minimal possi-

ble overhead. In practice, however, such source code listing grows large and takes too 

much time to be compiled into binary (e.g. hours of compilation for a large program). 

To overcome this issue the series of events was encoded into a binary file (to reduce 

size), and a trivial interpreter was developed, which decodes the file and performs the 

actions using a worker thread pool on each node. This decoding does add some over-

head, but it is usually negligible due to coarse granularity of CFs. A separate thread 

was dedicated to receiving messages from other nodes. 

For experimental performance evaluation a Particle-In-Cell application for self-

gravitating dust-cloud simulation [19] was used as an example of a rather complicated 

real supercomputing-targeted application. Tests were conducted on MVS-10p cluster 

of Joint Supercomputing Center of Russian Academy of Sciences
2
. The testing was 

conducted for various parameters (see Table 1) to investigate performance in different 

conditions. 

Table 1. Experimental results 

Parameters Execution time (sec.) 

Mesh size Particles Cores MPI LuNA-TB LuNA 

100
3
 10

6
 64 5.287 13.69 355.5 

150
3
 10

6
 64 18.896 31.088 732.833 

150
3
 10

7
 64 23.594 111.194 2983 

150
3
 10

7
 125 23.352 118.32 3086.411 

150
3
 10

6
 343 33.697 39.651 1008.655 

Two programs, developed by S. Kireev for [20], which implement the same algo-

rithm, were used. The first program is a conventional C++ distributed parallel pro-

gram, based on Message Passing Interface (MPI). The second one is a LuNA pro-

gram. Execution time for these programs is shown in Table 1. There is also a column 

labeled LuNA-TB. This is the execution time of the same LuNA program, but using 

the trace-playback technique. The MPI program can be considered as a reference 

point, its efficiency is what one can expect as a result of manual development of an 

experienced applied programmer. The LuNA program is an automatically constructed 

program using a general approach, and its efficiency is expectedly much lower, than 

that of the MPI program. And the LuNA-TB is somewhere in the middle, an automat-

ically generated program using the particular trace playback approach. 

The main result of the testing is that LuNA-playback indeed significantly speeds 

up execution of LuNA programs. This confirms that the trace playback is a useful 

technique for optimizing efficiency of automatically constructed parallel programs. Its 

efficiency is still lower than that of the MPI program, but this is obviously a practical-

ly usable result, considering that it is obtained automatically. 

                                                           
2  http://www.jscc.ru 
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It can also be seen from Table 1 that trace playback approach is more advantageous 

for programs with finer granularity, where fragments are of lesser size. The advantage 

is the bigger the more computing nodes are involved in computation. This is also 

expected, since dynamic decentralized algorithms employed in LuNA produce signif-

icant overhead, which is cut off with trace playback. 

5 Conclusion 

The trace playback technique is investigated as a distributed programs optimization 

technique for parallel programming automation systems. Trace playback was imple-

mented for LuNA system for automatic numerical parallel programs construction. The 

experiments showed a significant improvement of the efficiency of constructed pro-

grams. Possible improvements of the technique, aimed at overcoming its drawbacks 

are briefly discussed. It can be concluded that the trace playback technique is practical 

for high performance distributed parallel programs construction automation, which 

can be used automatically (along with other particular system algorithms and heuris-

tics). In future we plan to further investigate the approach within LuNA system to 

widen the application class this technique is applicable to. 

The work was supported by the budget project of the ICMMG SB RAS No. 0251-

2021-0005. 
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