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Abstract. The organization of high performance execution of a fragmented program has 

encountered with the problem of choosing of an acceptable way of its execution. The potentialities 

of optimizing the execution at the stages of fragmented program development, compilation and 

execution are considered. The methods and algorithms of such an optimization are proposed to be 

included into the LuNA fragmented programming language, compiler, generator and run-time 

system. 
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1 Introductory definitions and relative works 

The idea of data and algorithms fragmentation has been exploited in 

programming, at least, since the early 1970-s [1–8]. Different modifications of 

this approach were embodied in programming systems [3–5]. Many programming 

systems use the run-time systems for the organization of computation [6–12]. In 

[3], instead of a commonly used run-time system for organization of the program 

execution, a special hardware and operating system were developed. Our LuNA 

fragmented programming system project is oriented to the creation of a parallel 

numerical subroutine library. 

A general model of a program in the above-mentioned systems can be 

described as computational model [1]. 

General model definition 

Given: 

 The finite set X={x, у, ..., z} of variables for representation of different 

computed values; 
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 The finite set F={а, b, ..., с} of functional symbols (operations, Fig. 1.a), 

m0 is the number of input variables, n0 is the number of output 

variables; 

 in(a)=(x1, ...,xm) is a set of input variables, out(a)=(y1, …,yn) is a set of 

output variables (Fig. 1), if ij  yi  yj.& xi  xj 

Model С=(X,F) is called simple computational model (SCM). Operation аF 

describes the possibility to compute the variables out(а) from the variables in(a), 

for example, with the use of a certain procedure. The model can be graphically 

depicted (Fig. 1) 
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Fig. 1 Examples of operations, variables and model 

Let VX, FF be given. A set of functional terms T(V,F) is defined as follows: 

1. If хV, then х is a term t, tT(V,F); in(t)={х}; out(t)={х}. 

2. Let {t
1
, ..., t

s
}  T(V,F) and аF, in(a)=(x1,...,xs) be given. The term 

t=a(t
1
,...,t

s
) is included into T(V,F) if i(xiout(t

i
)), in(t)

1

s

i
in(t

i
), 

out(t)=out(a). Here t=a(t
1
,...,t

s
) denotes that t is the term a(t

1
,...,t

s
). 

A term is depicted as a tree that contains both operations and variables of the 

term, see Fig. 2. 

 

a  

x1 x2 xn 
... 

a1 a2 an ... 
 



3 

Fig. 2 A depicted term 

We say that a term t computes a variable у  if уout(t). A set of terms T(V,F) 

defines all the variables of the SCM that can be computed from V variables. A set 

of terms TV
W

={tT(V,F)out(t)W} computes all the variables from W that 

can be computed from V variables. 

Any such subset RTV
W

 that xWtR(xout(t)) is called (V,W)-plan 

and defines an algorithm computing the variables W from the variables V. Here V 

and W denote the sets of input and output variables of the algorithm, respectively. 

Everywhere further a set of functional terms is considered as a representation of 

an algorithm. 

Interpretation. Let VX be given. Interpretation I in the domain D is a 

function that assigns to: 

 to every variable xV an entry dx=I(x)D, dx is a value of the variable x in 

the interpretation I, 

 to every operation aF, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, a 

computable function fa: D
m
 D

n
, 

 to every term t=a(t1,t2,...,tm), a superposition of the functions is assigned in 

accord with the rule I(a(t1,t2,...,tm))=fa(I(t1),I(t2),...,I(tm)). 

If t=a(t1,t2,...,tm) is an arbitrary term, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, 

then I(out(a))=val(t)=(d1,d2,...,dn)=fa(valx1(t1),valx2(t2),...,valxn(tn)). 

Further it is assumed that for every function fa=I(a) there exists a module 

(procedure) moda  that can be used in a program to compute the function fa. 

Correct interpretation. If there exist two different terms t1 and t2, 

yout(t1)out(t2), in(t1)in(t2)V, then valy(t1)=valy(t2) in the interpretation I, 

and the interpretation I is called correct interpretation. In the correct 

interpretation for any variable y, any pair of the terms t1 and t2, yout(t1)out(t2)  

yields the same value, valy(t1)=valy(t2). 

For definition of mass computations this model should be extended by 

inclusion of indexed operations and indexed variables (arrays). This technical 

work can be easily done. Obviously, in this extended model, a mass algorithm is 

represented by an infinite recursively countable set of functional terms. 

A program that implements an algorithm, represented by a set of 

functional terms, can be constructed with the procedure calls to moda in the order 
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not contradicting to the information dependences between the operations imposed 

by the terms structure. Usually, a run-time system is used to implement all the 

calls in a proper order. 

2. The Potentialities of improving the algorithm 

execution performance 

The algorithm representation as a set of functional terms does not 

automatically provide the algorithm execution with a good performance. 

Therefore in the LuNA model of a program some reductions of the general model 

should be done.  

Problems of the efficient algorithms execution are well known and in brief 

can be formulated as: 

a. Folding of a countable set of functional terms, representing an 

algorithm, into a finite representation. 

b. Dynamic allocation of a multicomputer resources. 

c. Dynamic data and operations distribution and their migration among 

the processor elements (PE) of a multicomputer. 

d. Dynamic choice of a certain operation for execution. 

The two main reductions are made for the LuNA model of a program. These are 

data and operations aggregation/fragmentation and multiple assignments. 

Taking into account the need for solving the above-listed problems, based 

on the experience of the other related developments, including our experience 

gained in the large scale numerical models development [15], we started the 

development of our fragmented programming system LuNA, based on the general 

model. The system is oriented to the development of fragmented programs, 

implementing numerical models.  

The first proposed LuNA application is the creation of a parallel numerical 

subroutine library. Every subroutine should be automatically provided with all the 

necessary dynamic properties. Aside from different problems of the LuNA 

creation, we concentrate here on the problem of the fragmented programs high 

performance execution. The proposed LuNA programming system is oriented to 

the distributed memory supercomputers, where computation nodes can be the 

shared memory multiprocessors. The network topology between nodes may be a 

tree, a mesh, a torus, etc. 
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In comparison with other libraries of parallel numerical subroutines, the 

LuNA library has a number of advantages. First, the LuNA library is highly 

portable. Subroutines are automatically tuned to available hardware resources by 

the LuNA compiler. Their dynamic properties, like dynamic load balancing, are 

automatically provided by the run-time system. Porting the LuNA library to 

another platform requires no changes of the library subroutine texts, though it 

requires the development of a new run-time system for a new platform. The 

LuNA run-time system is oriented to execution of numerical subroutines. This 

specialization is reflected in the algorithms designed for implementation of the 

LuNA run-time system, which are mostly oriented to minimization of a subroutine 

execution time.   

The second advantage is the ability of global optimization of multiple 

subroutines executed in parallel. In this case, the LuNA run-time system considers 

all the subroutines inputs, outputs and intervenient data as common memory. This 

allows avoiding unnecessary synchronizations between calls of subroutines and 

improving the resources distribution between subroutines. Thirdly, the 

programmer does not has to program communications, synchronizations and 

resources management. Instead, he/she only has to specify the program behavior. 

A class of problems, that can be well programmed in the LuNA depends 

on the algorithms implemented in it. Our current implementation is oriented to 

problems with massive parallelism, regular data and computations structure, such 

as iteration processes on regular meshes, matrix and vector operations, etc. Other 

classes of problems can also be programmed in the LuNA, but the performance of 

their execution may not be satisfactory. 

2.1.Variables, operations and data fragmentation 

Variables and operations of the general model can be aggregated. 

Therefore, the values of  simple (atomic) variables can be the data aggregates. The 

aggregates of variables and data both are denoted as data fragments (DF) that 

usually reflect the essence of an object domain. For example, a cell of a 3D-mesh 

in the Particle-In-Cell method can be considered as atomic part (DF) of the 

description of a minimal semantic part of a simulated phenomenon. In numerical 

algorithms a sub-matrix of a matrix can be defined as a DF, and the whole matrix 

is represented as a 2D array of its sub-matrices. An aggregated operation plus its 
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input and output DFs is called a computation fragment (CF). The DFs and CFs 

have unique names that predefine a single assignment mode of programming. A 

fragmented program (FP) is represented as a computable set of CFs. A CF can be 

once executed if certain values are assigned to all of its input DFs.  

Consider one simple example of the algorithm of summation of the two 

vectors  z=x+y  fragmentation (Fig. 3.a). Let n=MN, n  be the number of entries 

of the vectors x, y and z; M is the number of aggregated entries (the number of 

entries in a fragments), N is the number of fragments. As is shown in Fig. 3.b, the 

variables xi, yi and zi are aggregated into DFs XI, YI and ZI, respectively, where 

XI={xi|i=IM,…,(I+1)M–1}. Operations fi are similarly aggregated: CF FI={fi| 

i=IM,…,(I+1)M–1}. Such an algorithm is called fragmented algorithm (FA). 

The algorithm fragmentation is studied in a number of projects, in particular [13, 

14]. 
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Fig. 3 Fragmentation of the algorithm of summation of entries of two vectors 

Variables, operations and data fragmentation is done in order to make a 

decision on resources allocation or the operation choice for execution of an 

aggregated object, but not of every entry separately. Such a fragmentation 

substantially reduces the overhead. As a rule, such a fragmentation should satisfy 

the rules of time and spatial locality. 

DF spatial locality means that the DF elements are jointly processed, by 

the same procedure.  
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DF time locality means that the DF processing is restricted to a limited 

time interval. 

CF spatial locality means thet its operations process variables from a 

limited number of DFs. 

CF time locality means that all CF operations are executed within a limited 

time interval. 

2.2. Multiple assignment 

Multiple assignments of DFs is permitted, so DFs are able to keep 

different values at different moments similar to variables of an imperative 

programming language. Strictly speaking, a multiple assignable DF is a union of 

single assignment DFs, which will be mapped onto the same slot of memory.  

Multiple assignment is a facility to construct the resources allocation and 

to make (with the user’s help) the folding of an infinite set of functional terms into 

the finite FP. Multiple assignment is used for the implementation of numerical 

models in imperative programming languages. For example, iterative processing 

of a finite differences scheme is implemented in the same memory extent.  

Permission of multiple assignments requires an additional control in order 

to provide the correct use of different values. Consider an example (Fig. 4): DFs 

Xi are processed by CFs Ai. in(Ai) = {Xi-1}, out(Ai) = {Xi} (Fig. 4.a). All Xi are 

assigned for implementation into the same multiple assignments DF X (Fig. 4.b). 

If no additional control is defined, a value, produced by CF Ai may be consumed 

by any other Aj, while it has to be consumed by Ai+1. To solve this problem, the 

order of CFs execution is defined not by information dependences, but explicitly 

by the partial order relation , defined on the set of CFs. In particular,  should 

contain the entries {Ai-1,Ai|i=1,…,N}. 

 

A1 a) 

Ai X b) 

A2 AN 
X0 

... 
X1 XN 

iAi-1,Ai 

 

Fig. 4 Definition of CF execution order: a) information dependences, b) partial order relation 

Consider another example (Fig. 5). Two DFs: X1 and X2 are assigned for 

implementation into the same multiple assignments DF X. If no additional control 
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is defined, a value, produced by CF A1 may be replaced by that, produced by CF 

A2 before the first one is consumed by CF B1. To solve this problem, the direct 

control should be defined to provide the correct use of DFs’ values (in particular, 

a semaphore can be used). 
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Fig. 5 Multiple assignment DFs. 

In such a way, the LuNA fragmented program (LFP) is the five-tuple DF, CF, , 

DC, Code, where DF is a set of all the DFs, CF is a set of all the CFs,  

CFCF is the partial order relation, DC is a direct control. The Code function 

assigns the moda (fragment of code) for every CF, aCF Code(a)=moda. 

A minimal partial order relation min CF CF contains all the entries 

imposed by the information dependences between operations of the algorithm. 

Adding new entries into , a set of possible ways of the LFP execution can be 

reduced, which is very important for the LFP execution optimization.  

 

3.Examples of numerical algorithms fragmentation 

and the problems of their efficient execution 

3.1. Matrices multiplication 

A fragmented version of the algorithm of the two square N Nmatrices A and B 

multiplication, C=AB, is considered. Matrices are fragmented and represented as 

square KK matrices of the square MM  sub-matrices Ai,k, Bk,j, Ci,j (Fig. 6). Here 

the sub-matrices Ai,k, Bk,j, Ci,j are the DFs, N=KM. 

The DFs Ci,j,k  are intermediate variables. The CFs Fi,j,k and Si,j define the 

sub-matrices multiplication Ai,kBk,j=Ci,j,k and the summation 
, , ,

1

K

i j i j k

k

C C


  , 
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respectively. Information dependences are described by the relation  that 

i,j,k (Fi,j,k<Si,j). 

 

 

A 

, ,i j k
C  

,i j
C  

B 
Fi,j,k Si,j 

Ai,k 

Bk,j 
 

Fig. 6 Scheme of the fragmented algorithm of matrices multiplication 

 

The run-time system chooses a certain CF for execution in any order, which does 

not contradict to the relation . In this case, a correct result of the LFP execution 

will be produced, but the LFP execution performance might be low. For example, 

execution of any CF Fi,j,k produces a DF Ci,j,k, therefore some memory extent 

should be allocated to keep its value. On the other hand, after Si,j execution, the 

memory, allocated for the DFs Ci,j,k, is released. The run-time system should take 

this into account when CF is chosen for execution, otherwise the computer 

memory might be exhausted unproductively. A good (recommended) order would 

be the one with CFs Si,j executed as soon as possible (but only after all Fi,j,k with 

the same i and j are finished). 

Another problem here is data distribution. To what PE a certain DF should 

be assigned for processing? A random distribution results in a huge 

communications overhead and load imbalance. In the LuNA, there are 

potentialities to control the DFs distribution and migration in order to provide a 

good performance of LFP execution. 

3.2. LU-factorization 

Another example is fragmentation of the LU-factorization algorithm. The square 

nn matrix A is factorized into the lower triangular matrix L and the upper 

triangular matrix U, A=LU. 
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   (1) 

Matrix A is fragmented and represented as KK matrix of Ai,j sub-matrices. The 

matrices L and U are both represented as KK matrix of Li,j and Ui,j sub-matrices 

(Fig. 7.a). They are the DFs. Each DF Ai,j is processed according to formulas (1) 

by the CFs Li,j, Di or Ui,j, for the lower triangular, diagonal and upper triangular 

DFs, respectively, as shown in Fig. 7.a. The relation  is defined by the 

information dependences in (1) as follows: CFs Di should be executed after Li,j-1 

and Ui-1,j, CFs Ui,j should be executed after Ui-1,j and Di, and CFs Li,j should be 

executed after Li,j-1 and Dj (Fig 7.b). 
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Fig. 7. LU factorization. General scheme (a) and order scheme (b) 

It is clear from Fig. 7.b that execution of CF Di increases the number of CFs ready 

for execution (ready CFs), whereas execution of other CFs reduces it. A set of the 

ready CFs should be wide enough to permanently load all the PEs. Therefore, the 

run-time system should provide execution of CFs Di before the other CFs' 

execution. Fig. 8 illustrates two variants of CF choosing algorithms. The first 

thing is to permanently choose the Di  CFs in the last turn. This leads to the 

situations, when only one CF is ready (Fig. 8.a), and all the PEs are idly waiting 

for execution of one CF to be completed. The second algorithm chooses the CFs 

according to the diagonal front, as shown in Fig. 8.b. It provides a higher 

parallelism and a more efficient program execution. 
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Fig. 8 LU factorization, CF choosing 

4. The LuNA programming system 

In the LuNA programming system, an algorithm passes through a number 

of stages of transformation in order to become an executable program. Initially, an 

algorithm is a set of functional terms and can be executed ‘as is’, like it is done in 

functional languages. In this case, the run-time system has to assign a resource to 

every object (CF and DF) and to organize execution according to the relation . 

This is a complex procedure, which results in a low performance. 

In the LuNA programming system (Fig. 9), the FA execution is divided 

into three main steps. 1) FА is statically analyzed and the basic LFP execution 

schedule is constructed by a compiler. 2) The generator includes into LFP the info 

on hardware properties. 3) The resources allocation and the order of CFs 

execution selection are dynamically performed by the run-time system, which 

performs the LFP execution according to the statically constructed schedule. It’s 

necessary to use the run-time system, because a part of decisions on the LFP 

execution can be taken dynamically only, for example, the resources allocation. 

 
FA Compiler Generator 

Platform-

independent LFP 
LFP Run-time 

system  

Fig. 9 Structure of LuNA programming system 

The FA description consists of the two parts. The first one contains the 

description of the FA in the LuNA programming language, which is close to a 

mathematical description of the FA. The second part contains a source file in a 

conventional programming language (i.e. C++), in which the procedure 

definitions, implementing the FA’s code fragments, are included. Then the 
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programmer compiles the two parts into the C++ source file, which can be then 

compiled by a conventional compiler into an executable file. 

 

5. The other potentialities of optimizing the LFP 

execution 

There are several technological potentialities, used in the LuNA system to 

improve a set of CFs execution. Those are the means to express a supplementary 

information about a LFP and recommended ways of its execution. Note, that 

different hardware requires different recommendations; therefore both general and 

hardware-dependent recommendations can be provided by the user. The run-time 

system selects the most suitable recommendation set. 

5.1 Priority 

A real number called priority can be assigned to each CF. In the course of LFP 

execution, the run-time system tries to choose for execution a fragment with the 

highest value of priority. This allows controlling the CF execution flow to attain a 

better resources usage. The LuNA run-time system not only chooses the highest 

priority CF for execution but also schedules the CFs execution in such a way, that 

high priority CFs become ready sooner. In the LU-factorization, LFP (see the 

above example) the DFs Di have higher priorities than the rest of the CFs. 

 

5.2 The use of  groups and derivation algorithm. 

The LuNA language has facilities for the user to be able to describe a group of 

CFs. Usually, the information-dependent CFs are included into a group. The CFs, 

belonging to such a group, are executed according to the MGF strategy (Member 

of Group First). With the MGF strategy if a certain CF, included into a group, was 

chosen for execution, a higher priority is assigned to all the other CFs, belonging 

to the same group. This strategy brings about the consumption of intermediate 

DFs’ values soon after they were yielded. 

Groups can be formed by the LuNA compiler using the derivation 

algorithm [3]. This derivation algorithm processes a countable set of the CFs  

defined by an algorithm implemented by the LFP, re-constructs these functional 
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terms, and then folds them into the finite sets of indexed functional terms (see Fig. 

4.b). A range of different optimizing transformations of the sets of indexed 

functional terms is also provided. Any CF, included into a certain indexed 

functional term, is also included into a group. The construction of these sets of 

indexed functional terms permits one to automatically use the MGF strategy in the 

run-time system. 

In the above matrices multiplication algorithm, in order to optimize the 

resources use, the explicit groups definition can be exploited. All the CFs Fi,j,k 

with the same values of their indices i and j are included into the same group. If a 

certain CF is chosen for execution, the priorities of all the other CFs from its 

group are increased. Thus, all the CFs from this group will be executed. As a 

result, all the intermediate resources keeping the DFs Ci,j,k will be soon released. 

 

5.3 The CF weight 

Weight of a CF is a real value. It represents an estimation of the CF's execution 

time. In the LU-factorization, the time of execution of the CFs increases towards 

the right bottom corner of the matrix. The value of Weight is calculated by the 

run-time system to optimize the next LFP execution. 

 

5.4 The neighborhood relation 

A binary neighborhood relation  is defined on a set of the DFs. Two DFs are 

defined to be neighbor-related if it is recommended to keep them close to each 

other, for example, in the memory of the same PE. Usually, this is done for the 

DFs, which are the input variables of a certain CF, and their location in the same 

PE leads to reduction of the total communication overhead. The relation  can be 

automatically constructed, based on the structure of information dependences of 

the LFP, but in the general case, the neighborhood relation  is better defined by 

the user. 

The neighborhood relation  is taken into account when the initial data 

distribution with a low communication overhead, or a dynamic load balancing are 

constructed keeping the neighborhood relation . 
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The numerical algorithms exploit a limited number of the spatial data 

structures, like vectors, matrices, arrays, 3D meshes. The LuNA supports an 

explicit declaration of such data structures and implements a number of 

algorithms to perform the initial distribution and structure-keeping dynamic load 

balancing on commonly used hardware network topologies, like a 3D torus, a 

cluster or a complete graph. 

5.5. The LFP profiling 

The LFP profiling, i.e. gathering information, while LFP is executed, is a valuable 

source of optimization information that can be used by a compiler, a generator and 

a run-time system. The profile comprises information on CFs execution times, 

PEs load while LFP is executed, DFs distribution information, effective network 

bandwidth, etc. This information is taken into account in scheduling of the next 

LFP execution. Profiling leads to reduction of the execution time for each next 

LFP launch (of course, up to some limit). The way of LFP execution may be 

different for different input data, therefore the profile in not always helpful. 

6. Performance tests 

The concepts presented were implemented in the experimental LuNA fragmented 

programming system. It comprises the language of the LFP description, the 

compiler to an executable representation, the generator and the run-time system. A 

number of tests were performed. Priority and group testing were executed on an 8-

core SMP multiprocessor. The weights and the neighborhood relation tests were 

executed on a cluster. 

6.1 Priority testing 

This test should demonstrate advantages of the priority use. Three tests were 

accomplished for the LU-factorization: 

1. Inefficient. The relation  is defined in such a way that the inefficient order of 

the CFs execution would be implemented (Fig. 8.a.). 

2. Priority-based. The relation  reflects only the information dependences 

between the CFs. A higher priority was assigned to Di CFs and the lower – for 

the rest of the CFs. A certain order was dynamically chosen by the run-time 

system. 
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3. Efficient. The relation  is defined in such a way that the efficient order of the 

CFs execution would be implemented (Fig. 8.b) 

The results of testing are shown in Fig. 10.a. The time is normalized on 0 to 1 

scale, where 1 corresponds to inefficient execution time). 
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Fig. 10 Priority and group performance tests 

6.2 Group testing. 

The manner of how groups affect the execution time of the matrices multiplication 

program was tested in 3 tests: 

1. Inefficient. The relation  is defined so that all CFs Si,j are the last to be 

executed. As a result, all DFs Ci,j,k are kept in the memory long time. This is the 

most time- and memory-consuming LFP execution. 

2. Group-based. The priorities of the CFs of the same group are dynamically 

increased. 

3. Economical. The CF execution from other groups has never started before the 

execution of all the CFs from a currently executed group are completed. The test 

demonstrates the most memory-saving way of the LFP execution among the 1–3 

tests. 

The results are shown in Fig. 10.b. The time is normalized on a 0 to 1 

scale, where 1 corresponds to inefficient execution time). 
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6.3 The neighborhood relation and CF weight testing 

The model of a fragmented algorithm, implementing Particle-In-Cell method 

(PIC) application to the solution of an astrophysical problem[15] was chosen for 

testing. This is an explicit finite difference 3D scheme. A 3D mesh is represented 

by a 3D grid of DFs. Processing of each DF requires values from its 26 neighbors. 

A 3D grid of the DFs is processed iteratively by CF Fi,j,k
t
 , where i, j and k are 

indices of the CFs name, and t is the iteration number. The execution time of the 

CF Fi,j,k
t
  is defined by the function fi,j,k(t). Different definitions of fi,j,k(t) lead to 

different model behaviors. The fi,j,k(t) was chosen in such a way that the PIC 

model imitated a soliton orbiting a massive center. Respectively, the time of the 

CFs Fi,j,k
t
 execution was changing. 
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Fig. 11 The neighborhood relation influence on dynamic load balancing 

In the graphics, four balancing versions are shown. The abscissa axis is the 

iteration number, the ordinate axis is the iteration execution time. The time is 

normalized, where 1 corresponds to the execution time of the first iteration of the 

None version. 

The None version has no dynamic load balancing, the DFs not migrating. 

The execution time remains about the same, but a lot of the PEs' time is wasted, 

since the workload is not uniformly distributed. 

The Diffusion version is a certain diffusion dynamic load balancing 

algorithm. The load is being balanced, but the communication overhead grows, 
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since the DFs are mixing up not keeping the neighborhood relation, and the total 

execution time even exceeds the unbalanced version. 

The Neighbor version is the diffusion load balancing with the 

neighborhood relation taken into account. Those DFs migrate, which have more 

neighbors in the target PE. Such a load balancing keeps the communication 

overhead on a certain level and is not growing with a lapse of time. 

The Weight version is the same as Neighbor, but the CFs' weights are 

taken into account by the run-time system. The function fi,j,k
t
 is used as the CFs' 

weight. The load balancing algorithm works more accurately as compared to 

Neighbor version, and its execution time is a bit less. 

7. Conclusion 

The LuNA system of fragmented programming is still under development and 

improvement. This approach provides a hardware undependable representation of 

numerical algorithms and their portability among a wide range of multicomputers. 

Therefore, our next step will be the development of a parallel numerical 

subroutine library on the basis of the algorithms fragmentation and the LuNA 

system for the LFP construction. We are also planning to support the GPU/FPGA 

extensions as execution units of computation nodes. 
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