
1

Optimization Methods of Parallel Execution of

Numerical Programs in the LuNA Fragmented

Programming System

Victor Malyshkin and Vladislav Perepelkin

Institute of Computational Mathematics and Mathematical Geophysics. Russian

Academy of Sciences

{malysh, perepelkin}@ssd.sscc.ru

http://ssd.sscc.ru

Abstract. The organization of high performance execution of a fragmented program has

encountered with the problem of choosing of an acceptable way of its execution. The potentialities

of optimizing the execution at the stages of fragmented program development, compilation and

execution are considered. The methods and algorithms of such an optimization are proposed to be

included into the LuNA fragmented programming language, compiler, generator and run-time

system.

Keywords: parallel programming, fragmented programming, high performance

computing, program execution optimization

1 Introductory definitions and relative works

The idea of data and algorithms fragmentation has been exploited in

programming, at least, since the early 1970-s [1–8]. Different modifications of

this approach were embodied in programming systems [3–5]. Many programming

systems use the run-time systems for the organization of computation [6–12]. In

[3], instead of a commonly used run-time system for organization of the program

execution, a special hardware and operating system were developed. Our LuNA

fragmented programming system project is oriented to the creation of a parallel

numerical subroutine library.

A general model of a program in the above-mentioned systems can be

described as computational model [1].

General model definition

Given:

 The finite set X={x, у, ..., z} of variables for representation of different

computed values;

http://ssd.sscc.ru/

2

 The finite set F={а, b, ..., с} of functional symbols (operations, Fig. 1.a),

m0 is the number of input variables, n0 is the number of output

variables;

 in(a)=(x1, ...,xm) is a set of input variables, out(a)=(y1, …,yn) is a set of

output variables (Fig. 1), if ij yi yj.& xi xj

Model С=(X,F) is called simple computational model (SCM). Operation аF

describes the possibility to compute the variables out(а) from the variables in(a),

for example, with the use of a certain procedure. The model can be graphically

depicted (Fig. 1)

 a

 y1 y2 . . . yn

 x1 x2 . . . xm
 x

 y

 a b

 x

 y

 a b

 x

 y

 a b

a) b) c)

Fig. 1 Examples of operations, variables and model

Let VX, FF be given. A set of functional terms T(V,F) is defined as follows:

1. If хV, then х is a term t, tT(V,F); in(t)={х}; out(t)={х}.

2. Let {t
1
, ..., t

s
} T(V,F) and аF, in(a)=(x1,...,xs) be given. The term

t=a(t
1
,...,t

s
) is included into T(V,F) if i(xiout(t

i
)), in(t)

1

s

i
in(t

i
),

out(t)=out(a). Here t=a(t
1
,...,t

s
) denotes that t is the term a(t

1
,...,t

s
).

A term is depicted as a tree that contains both operations and variables of the

term, see Fig. 2.

a

x1 x2 xn
...

a1 a2 an ...

3

Fig. 2 A depicted term

We say that a term t computes a variable у if уout(t). A set of terms T(V,F)

defines all the variables of the SCM that can be computed from V variables. A set

of terms TV
W

={tT(V,F)out(t)W} computes all the variables from W that

can be computed from V variables.

Any such subset RTV
W

 that xWtR(xout(t)) is called (V,W)-plan

and defines an algorithm computing the variables W from the variables V. Here V

and W denote the sets of input and output variables of the algorithm, respectively.

Everywhere further a set of functional terms is considered as a representation of

an algorithm.

Interpretation. Let VX be given. Interpretation I in the domain D is a

function that assigns to:

 to every variable xV an entry dx=I(x)D, dx is a value of the variable x in

the interpretation I,

 to every operation aF, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, a

computable function fa: D
m
 D

n
,

 to every term t=a(t1,t2,...,tm), a superposition of the functions is assigned in

accord with the rule I(a(t1,t2,...,tm))=fa(I(t1),I(t2),...,I(tm)).

If t=a(t1,t2,...,tm) is an arbitrary term, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn},

then I(out(a))=val(t)=(d1,d2,...,dn)=fa(valx1(t1),valx2(t2),...,valxn(tn)).

Further it is assumed that for every function fa=I(a) there exists a module

(procedure) moda that can be used in a program to compute the function fa.

Correct interpretation. If there exist two different terms t1 and t2,

yout(t1)out(t2), in(t1)in(t2)V, then valy(t1)=valy(t2) in the interpretation I,

and the interpretation I is called correct interpretation. In the correct

interpretation for any variable y, any pair of the terms t1 and t2, yout(t1)out(t2)

yields the same value, valy(t1)=valy(t2).

For definition of mass computations this model should be extended by

inclusion of indexed operations and indexed variables (arrays). This technical

work can be easily done. Obviously, in this extended model, a mass algorithm is

represented by an infinite recursively countable set of functional terms.

A program that implements an algorithm, represented by a set of

functional terms, can be constructed with the procedure calls to moda in the order

4

not contradicting to the information dependences between the operations imposed

by the terms structure. Usually, a run-time system is used to implement all the

calls in a proper order.

2. The Potentialities of improving the algorithm

execution performance

The algorithm representation as a set of functional terms does not

automatically provide the algorithm execution with a good performance.

Therefore in the LuNA model of a program some reductions of the general model

should be done.

Problems of the efficient algorithms execution are well known and in brief

can be formulated as:

a. Folding of a countable set of functional terms, representing an

algorithm, into a finite representation.

b. Dynamic allocation of a multicomputer resources.

c. Dynamic data and operations distribution and their migration among

the processor elements (PE) of a multicomputer.

d. Dynamic choice of a certain operation for execution.

The two main reductions are made for the LuNA model of a program. These are

data and operations aggregation/fragmentation and multiple assignments.

Taking into account the need for solving the above-listed problems, based

on the experience of the other related developments, including our experience

gained in the large scale numerical models development [15], we started the

development of our fragmented programming system LuNA, based on the general

model. The system is oriented to the development of fragmented programs,

implementing numerical models.

The first proposed LuNA application is the creation of a parallel numerical

subroutine library. Every subroutine should be automatically provided with all the

necessary dynamic properties. Aside from different problems of the LuNA

creation, we concentrate here on the problem of the fragmented programs high

performance execution. The proposed LuNA programming system is oriented to

the distributed memory supercomputers, where computation nodes can be the

shared memory multiprocessors. The network topology between nodes may be a

tree, a mesh, a torus, etc.

5

In comparison with other libraries of parallel numerical subroutines, the

LuNA library has a number of advantages. First, the LuNA library is highly

portable. Subroutines are automatically tuned to available hardware resources by

the LuNA compiler. Their dynamic properties, like dynamic load balancing, are

automatically provided by the run-time system. Porting the LuNA library to

another platform requires no changes of the library subroutine texts, though it

requires the development of a new run-time system for a new platform. The

LuNA run-time system is oriented to execution of numerical subroutines. This

specialization is reflected in the algorithms designed for implementation of the

LuNA run-time system, which are mostly oriented to minimization of a subroutine

execution time.

The second advantage is the ability of global optimization of multiple

subroutines executed in parallel. In this case, the LuNA run-time system considers

all the subroutines inputs, outputs and intervenient data as common memory. This

allows avoiding unnecessary synchronizations between calls of subroutines and

improving the resources distribution between subroutines. Thirdly, the

programmer does not has to program communications, synchronizations and

resources management. Instead, he/she only has to specify the program behavior.

A class of problems, that can be well programmed in the LuNA depends

on the algorithms implemented in it. Our current implementation is oriented to

problems with massive parallelism, regular data and computations structure, such

as iteration processes on regular meshes, matrix and vector operations, etc. Other

classes of problems can also be programmed in the LuNA, but the performance of

their execution may not be satisfactory.

2.1.Variables, operations and data fragmentation

Variables and operations of the general model can be aggregated.

Therefore, the values of simple (atomic) variables can be the data aggregates. The

aggregates of variables and data both are denoted as data fragments (DF) that

usually reflect the essence of an object domain. For example, a cell of a 3D-mesh

in the Particle-In-Cell method can be considered as atomic part (DF) of the

description of a minimal semantic part of a simulated phenomenon. In numerical

algorithms a sub-matrix of a matrix can be defined as a DF, and the whole matrix

is represented as a 2D array of its sub-matrices. An aggregated operation plus its

6

input and output DFs is called a computation fragment (CF). The DFs and CFs

have unique names that predefine a single assignment mode of programming. A

fragmented program (FP) is represented as a computable set of CFs. A CF can be

once executed if certain values are assigned to all of its input DFs.

Consider one simple example of the algorithm of summation of the two

vectors z=x+y fragmentation (Fig. 3.a). Let n=MN, n be the number of entries

of the vectors x, y and z; M is the number of aggregated entries (the number of

entries in a fragments), N is the number of fragments. As is shown in Fig. 3.b, the

variables xi, yi and zi are aggregated into DFs XI, YI and ZI, respectively, where

XI={xi|i=IM,…,(I+1)M–1}. Operations fi are similarly aggregated: CF FI={fi|

i=IM,…,(I+1)M–1}. Such an algorithm is called fragmented algorithm (FA).

The algorithm fragmentation is studied in a number of projects, in particular [13,

14].

yi zi

data and

operations

aggergation

... ...

x y z

xi fi

z1 x1 f1

z2 x2 f2

zn xn fn

y2

y1

yn

x y z

... ...

XK

X1

XN

Y1

YK

YN

Z1

ZK

ZN

F1

FK

FN

a) b)

t1

t2

tn

t1

tK

tN

Fig. 3 Fragmentation of the algorithm of summation of entries of two vectors

Variables, operations and data fragmentation is done in order to make a

decision on resources allocation or the operation choice for execution of an

aggregated object, but not of every entry separately. Such a fragmentation

substantially reduces the overhead. As a rule, such a fragmentation should satisfy

the rules of time and spatial locality.

DF spatial locality means that the DF elements are jointly processed, by

the same procedure.

7

DF time locality means that the DF processing is restricted to a limited

time interval.

CF spatial locality means thet its operations process variables from a

limited number of DFs.

CF time locality means that all CF operations are executed within a limited

time interval.

2.2. Multiple assignment

Multiple assignments of DFs is permitted, so DFs are able to keep

different values at different moments similar to variables of an imperative

programming language. Strictly speaking, a multiple assignable DF is a union of

single assignment DFs, which will be mapped onto the same slot of memory.

Multiple assignment is a facility to construct the resources allocation and

to make (with the user’s help) the folding of an infinite set of functional terms into

the finite FP. Multiple assignment is used for the implementation of numerical

models in imperative programming languages. For example, iterative processing

of a finite differences scheme is implemented in the same memory extent.

Permission of multiple assignments requires an additional control in order

to provide the correct use of different values. Consider an example (Fig. 4): DFs

Xi are processed by CFs Ai. in(Ai) = {Xi-1}, out(Ai) = {Xi} (Fig. 4.a). All Xi are

assigned for implementation into the same multiple assignments DF X (Fig. 4.b).

If no additional control is defined, a value, produced by CF Ai may be consumed

by any other Aj, while it has to be consumed by Ai+1. To solve this problem, the

order of CFs execution is defined not by information dependences, but explicitly

by the partial order relation , defined on the set of CFs. In particular, should

contain the entries {Ai-1,Ai|i=1,…,N}.

A1 a)

Ai X b)

A2 AN
X0

...
X1 XN

iAi-1,Ai

Fig. 4 Definition of CF execution order: a) information dependences, b) partial order relation

Consider another example (Fig. 5). Two DFs: X1 and X2 are assigned for

implementation into the same multiple assignments DF X. If no additional control

8

is defined, a value, produced by CF A1 may be replaced by that, produced by CF

A2 before the first one is consumed by CF B1. To solve this problem, the direct

control should be defined to provide the correct use of DFs’ values (in particular,

a semaphore can be used).

A1

B1

A2

B2

X1 X2

a)

A1

B1

A2

B2

X1

b)

Fig. 5 Multiple assignment DFs.

In such a way, the LuNA fragmented program (LFP) is the five-tuple DF, CF, ,

DC, Code, where DF is a set of all the DFs, CF is a set of all the CFs,

CFCF is the partial order relation, DC is a direct control. The Code function

assigns the moda (fragment of code) for every CF, aCF Code(a)=moda.

A minimal partial order relation min CF CF contains all the entries

imposed by the information dependences between operations of the algorithm.

Adding new entries into , a set of possible ways of the LFP execution can be

reduced, which is very important for the LFP execution optimization.

3.Examples of numerical algorithms fragmentation

and the problems of their efficient execution

3.1. Matrices multiplication

A fragmented version of the algorithm of the two square N Nmatrices A and B

multiplication, C=AB, is considered. Matrices are fragmented and represented as

square KK matrices of the square MM sub-matrices Ai,k, Bk,j, Ci,j (Fig. 6). Here

the sub-matrices Ai,k, Bk,j, Ci,j are the DFs, N=KM.

The DFs Ci,j,k are intermediate variables. The CFs Fi,j,k and Si,j define the

sub-matrices multiplication Ai,kBk,j=Ci,j,k and the summation
, , ,

1

K

i j i j k

k

C C

 ,

9

respectively. Information dependences are described by the relation that

i,j,k (Fi,j,k<Si,j).

A

, ,i j k
C

,i j
C

B
Fi,j,k Si,j

Ai,k

Bk,j

Fig. 6 Scheme of the fragmented algorithm of matrices multiplication

The run-time system chooses a certain CF for execution in any order, which does

not contradict to the relation . In this case, a correct result of the LFP execution

will be produced, but the LFP execution performance might be low. For example,

execution of any CF Fi,j,k produces a DF Ci,j,k, therefore some memory extent

should be allocated to keep its value. On the other hand, after Si,j execution, the

memory, allocated for the DFs Ci,j,k, is released. The run-time system should take

this into account when CF is chosen for execution, otherwise the computer

memory might be exhausted unproductively. A good (recommended) order would

be the one with CFs Si,j executed as soon as possible (but only after all Fi,j,k with

the same i and j are finished).

Another problem here is data distribution. To what PE a certain DF should

be assigned for processing? A random distribution results in a huge

communications overhead and load imbalance. In the LuNA, there are

potentialities to control the DFs distribution and migration in order to provide a

good performance of LFP execution.

3.2. LU-factorization

Another example is fragmentation of the LU-factorization algorithm. The square

nn matrix A is factorized into the lower triangular matrix L and the upper

triangular matrix U, A=LU.

10

1, 1,

,1

,1

1,1

1

, , , ,

1

1

, , , ,

1,

, 1, ,

, 2, ,

, 2, , ; , ,

1
(), 2, , ; 1, ,

j j

j

j

i

i j i j i k k j

k

i

j i j i j k k j

ki j

u a j n

a
j j n

u

u a l u i n j i n

j a l u i n j i n
u

 (1)

Matrix A is fragmented and represented as KK matrix of Ai,j sub-matrices. The

matrices L and U are both represented as KK matrix of Li,j and Ui,j sub-matrices

(Fig. 7.a). They are the DFs. Each DF Ai,j is processed according to formulas (1)

by the CFs Li,j, Di or Ui,j, for the lower triangular, diagonal and upper triangular

DFs, respectively, as shown in Fig. 7.a. The relation is defined by the

information dependences in (1) as follows: CFs Di should be executed after Li,j-1

and Ui-1,j, CFs Ui,j should be executed after Ui-1,j and Di, and CFs Li,j should be

executed after Li,j-1 and Dj (Fig 7.b).

A

D1

L and U

Ln,1

U1,n

a) b)

Ai,j

Ai,j

U2,n

Ln,2

D2

…

Dn

L2,1

… …

Ln,2

U2,n

…

…

… U1,2

Ui,j

Lg,h

CFs CFs

…

Fig. 7. LU factorization. General scheme (a) and order scheme (b)

It is clear from Fig. 7.b that execution of CF Di increases the number of CFs ready

for execution (ready CFs), whereas execution of other CFs reduces it. A set of the

ready CFs should be wide enough to permanently load all the PEs. Therefore, the

run-time system should provide execution of CFs Di before the other CFs'

execution. Fig. 8 illustrates two variants of CF choosing algorithms. The first

thing is to permanently choose the Di CFs in the last turn. This leads to the

situations, when only one CF is ready (Fig. 8.a), and all the PEs are idly waiting

for execution of one CF to be completed. The second algorithm chooses the CFs

according to the diagonal front, as shown in Fig. 8.b. It provides a higher

parallelism and a more efficient program execution.

11

a) inefficient CF choosing,

bottleneck

b) efficient CF choosing

Finished CF

Ready CF

Not ready CF

Fig. 8 LU factorization, CF choosing

4. The LuNA programming system

In the LuNA programming system, an algorithm passes through a number

of stages of transformation in order to become an executable program. Initially, an

algorithm is a set of functional terms and can be executed ‘as is’, like it is done in

functional languages. In this case, the run-time system has to assign a resource to

every object (CF and DF) and to organize execution according to the relation .

This is a complex procedure, which results in a low performance.

In the LuNA programming system (Fig. 9), the FA execution is divided

into three main steps. 1) FА is statically analyzed and the basic LFP execution

schedule is constructed by a compiler. 2) The generator includes into LFP the info

on hardware properties. 3) The resources allocation and the order of CFs

execution selection are dynamically performed by the run-time system, which

performs the LFP execution according to the statically constructed schedule. It’s

necessary to use the run-time system, because a part of decisions on the LFP

execution can be taken dynamically only, for example, the resources allocation.

FA Compiler Generator

Platform-

independent LFP
LFP Run-time

system

Fig. 9 Structure of LuNA programming system

The FA description consists of the two parts. The first one contains the

description of the FA in the LuNA programming language, which is close to a

mathematical description of the FA. The second part contains a source file in a

conventional programming language (i.e. C++), in which the procedure

definitions, implementing the FA’s code fragments, are included. Then the

12

programmer compiles the two parts into the C++ source file, which can be then

compiled by a conventional compiler into an executable file.

5. The other potentialities of optimizing the LFP

execution

There are several technological potentialities, used in the LuNA system to

improve a set of CFs execution. Those are the means to express a supplementary

information about a LFP and recommended ways of its execution. Note, that

different hardware requires different recommendations; therefore both general and

hardware-dependent recommendations can be provided by the user. The run-time

system selects the most suitable recommendation set.

5.1 Priority

A real number called priority can be assigned to each CF. In the course of LFP

execution, the run-time system tries to choose for execution a fragment with the

highest value of priority. This allows controlling the CF execution flow to attain a

better resources usage. The LuNA run-time system not only chooses the highest

priority CF for execution but also schedules the CFs execution in such a way, that

high priority CFs become ready sooner. In the LU-factorization, LFP (see the

above example) the DFs Di have higher priorities than the rest of the CFs.

5.2 The use of groups and derivation algorithm.

The LuNA language has facilities for the user to be able to describe a group of

CFs. Usually, the information-dependent CFs are included into a group. The CFs,

belonging to such a group, are executed according to the MGF strategy (Member

of Group First). With the MGF strategy if a certain CF, included into a group, was

chosen for execution, a higher priority is assigned to all the other CFs, belonging

to the same group. This strategy brings about the consumption of intermediate

DFs’ values soon after they were yielded.

Groups can be formed by the LuNA compiler using the derivation

algorithm [3]. This derivation algorithm processes a countable set of the CFs

defined by an algorithm implemented by the LFP, re-constructs these functional

13

terms, and then folds them into the finite sets of indexed functional terms (see Fig.

4.b). A range of different optimizing transformations of the sets of indexed

functional terms is also provided. Any CF, included into a certain indexed

functional term, is also included into a group. The construction of these sets of

indexed functional terms permits one to automatically use the MGF strategy in the

run-time system.

In the above matrices multiplication algorithm, in order to optimize the

resources use, the explicit groups definition can be exploited. All the CFs Fi,j,k

with the same values of their indices i and j are included into the same group. If a

certain CF is chosen for execution, the priorities of all the other CFs from its

group are increased. Thus, all the CFs from this group will be executed. As a

result, all the intermediate resources keeping the DFs Ci,j,k will be soon released.

5.3 The CF weight

Weight of a CF is a real value. It represents an estimation of the CF's execution

time. In the LU-factorization, the time of execution of the CFs increases towards

the right bottom corner of the matrix. The value of Weight is calculated by the

run-time system to optimize the next LFP execution.

5.4 The neighborhood relation

A binary neighborhood relation is defined on a set of the DFs. Two DFs are

defined to be neighbor-related if it is recommended to keep them close to each

other, for example, in the memory of the same PE. Usually, this is done for the

DFs, which are the input variables of a certain CF, and their location in the same

PE leads to reduction of the total communication overhead. The relation can be

automatically constructed, based on the structure of information dependences of

the LFP, but in the general case, the neighborhood relation is better defined by

the user.

The neighborhood relation is taken into account when the initial data

distribution with a low communication overhead, or a dynamic load balancing are

constructed keeping the neighborhood relation .

14

The numerical algorithms exploit a limited number of the spatial data

structures, like vectors, matrices, arrays, 3D meshes. The LuNA supports an

explicit declaration of such data structures and implements a number of

algorithms to perform the initial distribution and structure-keeping dynamic load

balancing on commonly used hardware network topologies, like a 3D torus, a

cluster or a complete graph.

5.5. The LFP profiling

The LFP profiling, i.e. gathering information, while LFP is executed, is a valuable

source of optimization information that can be used by a compiler, a generator and

a run-time system. The profile comprises information on CFs execution times,

PEs load while LFP is executed, DFs distribution information, effective network

bandwidth, etc. This information is taken into account in scheduling of the next

LFP execution. Profiling leads to reduction of the execution time for each next

LFP launch (of course, up to some limit). The way of LFP execution may be

different for different input data, therefore the profile in not always helpful.

6. Performance tests

The concepts presented were implemented in the experimental LuNA fragmented

programming system. It comprises the language of the LFP description, the

compiler to an executable representation, the generator and the run-time system. A

number of tests were performed. Priority and group testing were executed on an 8-

core SMP multiprocessor. The weights and the neighborhood relation tests were

executed on a cluster.

6.1 Priority testing

This test should demonstrate advantages of the priority use. Three tests were

accomplished for the LU-factorization:

1. Inefficient. The relation is defined in such a way that the inefficient order of

the CFs execution would be implemented (Fig. 8.a.).

2. Priority-based. The relation reflects only the information dependences

between the CFs. A higher priority was assigned to Di CFs and the lower – for

the rest of the CFs. A certain order was dynamically chosen by the run-time

system.

15

3. Efficient. The relation is defined in such a way that the efficient order of the

CFs execution would be implemented (Fig. 8.b)

The results of testing are shown in Fig. 10.a. The time is normalized on 0 to 1

scale, where 1 corresponds to inefficient execution time).

0

0,2

0,4

0,6

0,8

1

1,2

Inefficient E fficient Prio rity-

b ased

ti
m

e
 (

n
o

rm
a
li
z
e
d

)

 .

0

0 ,2

0 ,4

0,6

0,8

1

1,2

Inefficient E co nom ical G ro up -

b ased
ti

m
e
 (

n
o

rm
a
li
z
e
d

)

 .

a) b)

Fig. 10 Priority and group performance tests

6.2 Group testing.

The manner of how groups affect the execution time of the matrices multiplication

program was tested in 3 tests:

1. Inefficient. The relation is defined so that all CFs Si,j are the last to be

executed. As a result, all DFs Ci,j,k are kept in the memory long time. This is the

most time- and memory-consuming LFP execution.

2. Group-based. The priorities of the CFs of the same group are dynamically

increased.

3. Economical. The CF execution from other groups has never started before the

execution of all the CFs from a currently executed group are completed. The test

demonstrates the most memory-saving way of the LFP execution among the 1–3

tests.

The results are shown in Fig. 10.b. The time is normalized on a 0 to 1

scale, where 1 corresponds to inefficient execution time).

16

6.3 The neighborhood relation and CF weight testing

The model of a fragmented algorithm, implementing Particle-In-Cell method

(PIC) application to the solution of an astrophysical problem[15] was chosen for

testing. This is an explicit finite difference 3D scheme. A 3D mesh is represented

by a 3D grid of DFs. Processing of each DF requires values from its 26 neighbors.

A 3D grid of the DFs is processed iteratively by CF Fi,j,k
t
 , where i, j and k are

indices of the CFs name, and t is the iteration number. The execution time of the

CF Fi,j,k
t
 is defined by the function fi,j,k(t). Different definitions of fi,j,k(t) lead to

different model behaviors. The fi,j,k(t) was chosen in such a way that the PIC

model imitated a soliton orbiting a massive center. Respectively, the time of the

CFs Fi,j,k
t
 execution was changing.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

iteration number

ti
m

e
 (

n
o

rm
a

li
z
e

d
)

.

None

Diffusion

Neighbor

Weight

Fig. 11 The neighborhood relation influence on dynamic load balancing

In the graphics, four balancing versions are shown. The abscissa axis is the

iteration number, the ordinate axis is the iteration execution time. The time is

normalized, where 1 corresponds to the execution time of the first iteration of the

None version.

The None version has no dynamic load balancing, the DFs not migrating.

The execution time remains about the same, but a lot of the PEs' time is wasted,

since the workload is not uniformly distributed.

The Diffusion version is a certain diffusion dynamic load balancing

algorithm. The load is being balanced, but the communication overhead grows,

17

since the DFs are mixing up not keeping the neighborhood relation, and the total

execution time even exceeds the unbalanced version.

The Neighbor version is the diffusion load balancing with the

neighborhood relation taken into account. Those DFs migrate, which have more

neighbors in the target PE. Such a load balancing keeps the communication

overhead on a certain level and is not growing with a lapse of time.

The Weight version is the same as Neighbor, but the CFs' weights are

taken into account by the run-time system. The function fi,j,k
t
 is used as the CFs'

weight. The load balancing algorithm works more accurately as compared to

Neighbor version, and its execution time is a bit less.

7. Conclusion

The LuNA system of fragmented programming is still under development and

improvement. This approach provides a hardware undependable representation of

numerical algorithms and their portability among a wide range of multicomputers.

Therefore, our next step will be the development of a parallel numerical

subroutine library on the basis of the algorithms fragmentation and the LuNA

system for the LFP construction. We are also planning to support the GPU/FPGA

extensions as execution units of computation nodes.

References

1. Valkovskii VA, Malyshkin VE (1988) Parallel Program Synthesis on the Basis of

Computational Models. Nauka, Novosibirsk

2. Glushkov VM, Ignatiev MV, Myasnikov VA, Torgashev VA (1974) Recursive machines and

computing technologies. IFIP Cong, Vol.1., pp. 65–70. North-Holland Publish. Co

3. Torgashev VA, Tsarev IV (2001) Programming facilities for organization of parallel

computation in multicomputers of dynamic architecture. Programmirovanie, No.4, pp. 53–67.

4. Cell Superscalar, http://www.bsc.es/cellsuperscalar. Accessed 15 November 2010

5. Charm++, http://charm.cs.uiuc.edu. Accessed 15 November 2010

6. Shu W, Kale LV (1991) Chare Kernel – a Runtime Support System for Parallel Computations. J

Parallel Distrib Comput, Vol. 11, Issue 3, pp. 198–211

7. Kalgin KV, Malyskin VE, Nechaev SP, Tschukin GA (2007) Runtime System for Parallel

Execution of Fragmented Subroutines. 9th Int Conf Parallel Comput Technol, Springer Verlag,

LNCS, Vol. 4671, pp. 544–552

8. Blumofe RD, Joerg CF, Kuszmaul BC, Leiserson CE, Randall KH, Zhou Y (1995) Cilk: An

Efficient Multithreaded Runtime System. ACM SIGPLAN Not, Vol. 30, Issue 8, pp. 207–216

http://www.bsc.es/cellsuperscalar
http://charm.cs.uiuc.edu/

18

9. Foster I, Kesselman C, Tuecke S (1998) Nexus: Runtime Support for Task-Parallel

Programming Languages. Clust Comput, Issue 1(1), pp. 95–107

10. Chien AA, Karamcheti V, Plevyak J (1993) The Concert System – Compiler and Runtime

Support for Efficient, Fine-Grained Concurrent Object-Oriented Programs. UIUC DCS Tech

Rep R-93-1815

11. Grimshaw AS, Weissman JB, Strayer WT (1996) Portable Run-Time Support for Dynamic

Object-Oriented Parallel Processing. ACM Trans Comput Syst (TOCS), Vol. 14, Issue 2, pp.

139–170

12. Benson GD, Olsson RA (1997) A Portable Run-Time System for the SR Concurrent

Programming Language. Workshop Run-Time Syst Parallel Program (RTSPP)

13. Malyshkin VE, Sorokin SB, Chauk KG (2009) Fragmentation of numerical algorithms for the

Parallel Subroutine Library. Springer Verlag, LNCS, Vol. 5698, pp. 331–343

14. The Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA) project

http://icl.cs.utk.edu/plasma. Accessed 15 November 2010

15. Kraeva MA, Malyshkin VE (2001) Assembly Technology for Parallel Realization of

Numerical Models on MIMD-Multicomputers. Int J Future Gener Comput Syst, Elsevier

Science. Vol. 17, No. 6, pp. 755–765

http://icl.cs.utk.edu/plasma

