

Active Knowledge, LuNA and

Literacy for Oncoming Centuries

Essay on the development of Parallel Computing Technologies

Victor Malyshkin

Institute of Computational Mathematics and Mathematical Geophysics

Russian Academy of Sciences,

National Research University of Novosibirsk

malysh@ssd.sscc.ru

http://ssd.sscc.ru

Abstract. The concept of active knowledge implementation on

the basis of the theory of structural program synthesis, modern

technologies and their necessary developments are considered.
The theory is proposed for technological description,

accumulation, keeping, processing and application of active

knowledge. On this basis the notion of literacy for the future is

suggested. The concept was implemented in the frame of the

LuNA project aimed at elimination of parallel programming from

the process of large-scale numerical models development.

Keywords. active knowledge, program synthesis, active

knowledge base, structural program synthesis, program automatic

construction, literacy, LuNA fragmented programming system

LITERACY is the capability of a

human being to describe, to keep, to

understand and to apply the knowledge.

1. Introduction

 During last years, the computing technologies have substantially changed our

life. In this simple technological paper we would like to look at new progressive

technology – technology of active knowledge - that can be partially implemented right

now basing on the current scientific knowledge, accumulated in scientific

computations, theoretical models of parallel computations [1-6], technological results

and current system software that are now in use or under development [7-16].

 The approach to a possible pragmatic application of the theory of structural

program synthesis [6] to the development of the active knowledge technology is

discussed. The sum of the current theoretical results provides understanding of the

approaches to the solution of active knowledge problem. It is interesting now to look at

how the problem could be solved and technologically
1

 implemented. In this

1
 The term technological is used in order to denote that a specified object (theory,

model, problem, algorithm, program, etc.) can be implemented for practically

acceptable time and with necessary properties, with the use of acceptable number of

resources.

mailto:malysh@ssd.sscc.ru
http://ssd.sscc.ru/

technological paper the problem of the current implementability of the active

knowledge technology is considered.

2. Active and passive knowledge
Principal idea. The problem of active knowledge technology creation was

principally solved in the frame of the theories of program synthesis. Below the

technologically implementable approach, based on the theory of structural

program synthesis, that is ready for implementation right now, is mostly

discussed.

2.1. Passive representation of the knowledge. There are now four main

problems to utilize the knowledge represented in passive form:

1. Currently existing phonetic systems of knowledge description, keeping

and processing are actually the systems of passive knowledge (texts,

movies, etc.) representation, i.e., this knowledge description cannot be

applied directly, automatically. Keeping in the hands a book(s) with the

complete enough description of the technology of a bridge construction, a

desired/specified bridge cannot be constructed automatically even after the

magic incantations were pronounced. This is so, because a computer

doesn’t understand phonetic text and unable to extract the knowledge from

it.

2. In order to utilize such passive knowledge, the people should adopt (read,

understand and be able correctly to apply) a large body in the literature of

the subject. It takes generally about 25 and even more years. Also, the

technologies are now permanently under modifications and the process of

learning is being permanent.

3. A big volume of passive knowledge is already accumulated. Sometimes

the passive knowledge is not in (intensive) use and even can be forgotten

and lost.

4. Also application programs, implementing passive knowledge, are usually

developed as “black box” and cannot be automatically modified in

accordance with a user demands.

2.2. Active representation of the knowledge. In order to overcome the above

mentioned problems, the knowledge should be represented in active form that

can be understood by a computer system and applied automatically to solution

of a certain specified problem. Active knowledge representation should provide

knowledge extraction from its description and the knowledge use for solution

of a certain application problem [13].

 Mathematical logic describes the way to solve the problem of active

knowledge representation, understanding and application in four steps:

- development of complete enough axiomatic theory (AT),

- application problem formulation in terms of the theory,

- derivation of a desirable algorithm for application problem

solution (APS),

- generation of a program, implementing derived APS algorithm

2.3. Logic program synthesis. The method is based on the sufficiently

complete AT, describing an object domain. Within the frame of this theory the

necessary assertions are proved or disproved from the set of axioms.

 The fact is, the method is technologically not implementable, at least

because of too high complexity of APS algorithms derivation and the absence

of a possibility to provide desirable pragmatic properties both derived APS

algorithms and implementing programs.

2.4 Technological requirements to AT representation. Technological

description of AT should provide:

1. in order to avoid high complexity of APS algorithm derivation, an AT

should be described partially [14], only the necessary APS algorithms

should be derivable in the frame of the AT. This de facto means, that AT

(knowledge base) description should be generated from a problem

formulation.

2. an AT is defined partially not taking care of completeness of the AT.

Practically it means, that as a rule, an AT should be defined for solution

the only problem or, may be, for solution of few problems;

3. derived APS algorithms should be represented as a set of recursively

countable set of functional terms [17]. Therefore, a language of partial

AT description should be a language for description of sets of all

operations of functional terms with their input and output variables.

This language can be understood by a computer. This is the basis for

creation of new writing and literacy. Ability to operate with AT will

define soon the literacy of human being.

4. an AT description should be easy extendable, in order to include into

the AT the descriptions of the other problems solutions when the need

arises. It should be simple technological (not scientific) work.

5. program, implementing derived algorithm, should be generated

automatically and possess by all the desirable properties (arbitrary

program is not acceptable), like:

 to be executed in parallel;

 to be tunable (statically and dynamically) to all the available

resources of a computer system;

 able to be executed on heterogeneous distributed computer

system;

 with dynamic workload balancing;

 to have the demanded level of reliability,

 to be modified on a user demand,

and many other pragmatic properties.

3. Technological notion of knowledge
It is necessary to define a technologically implementable method to describe, to

accumulate and, what is the most important, correctly to exploit the knowledge,

represented in the active form, without knowledge adaptation by a human being

in all the thinkable details.

3.1. Structural program synthesis (SPS). For the reason of high complexity

of an APS algorithms derivation in the frame of logic programming we are

forced to use in practice the methods with lesser possibilities for the knowledge

description, but more suitable for computer processing. One of such methods is

based on imposing a structure on the knowledge base that reflects the

associative dependences between the objects of the object domain. In the

process of an algorithm derivation, the explicit representation of these

dependences in a computer permits to use the associative search instead of the

random search in logic programming. The method of structural program

synthesis [6] is based on this idea. Rephrased idea of structural program

synthesis is:

• there is no any technological sense to develop the general theory for

algorithm derivation from functional specification. A partially defined AT

can be successfully used providing an acceptable quality both algorithms

and implementing programs.

• A desirable program should be constructed out of accumulated

well-developed ready-made modules each of which represents one step

((A,AB) B) of APS derivation.

The theory of structural program synthesis [6] satisfies all the above

requirements. This method was applied to parallel implementation of different

large-scale numerical models [10,16] and the necessary experience was gained,

algorithms and programs were developed.

3.2. The notion of knowledge. Omitting unnecessary here details, the

program module (procedure, subroutine, hardware block) will be considered to

be atomic unit of an active knowledge. Such module represents one step

(A,AB) B) of APS derivation. The execution of this module will result in the

active knowledge application. The algorithms, used into this module,

implement the active knowledge. For instance, the knowledge of arithmetic is

now implemented inside the module called calculator. From now nobody

needs to know algorithms of arithmetic and mental arithmetic in order

successfully to utilize the arithmetic.

` A set of all the knowledge units of an object domain (library of modules)

does not yet constitute the knowledge base, because on this set different

relations exist, in particular, the relation of information dependences or

neighborhood relation. These relations should also be described and

implemented in a generated program. Also for any module the (input)

variables, to which only this module is permitted to be applied for computing

another (output) variables should be described. Any module denotes the step of

an APS algorithm derivation. Thus, knowledge base is actually a partially

defined AT, represented by a set of steps of an APS algorithm derivation. An

example is given below.

 With this technological definition of the active knowledge, the main

objects of knowledge processing will be algorithms and programs. Therefore,

the well-known methods of APS algorithms derivation and program synthesis

can be applied to the description and processing of the knowledge base [6].

4. Technological model of knowledge
Thus, let us consider shortly the computational model [6] as the basis for

definition of the knowledge base.

4.1. The general definition of the program synthesis problem. The

knowledge base (actually partially defined AT) in the method of structural

program synthesis constitutes a set of ready-made modules (programs,

subroutines). For each module the allowable sets of input and output variables

are defined. The solution of a specified problem is assembled out of these

modules if possible. If this is not possible, the AT is extended by adding new

modules to the knowledge base. Also, if the solution of a specified problem

does not satisfy the user, then some modules should be replaced by better

modules or new modules be added.

The general formulation of the program synthesis problem is;

Given:

- class S of input problem specifications,

- class Р of resulting programs,

- equivalency relation on Р,

- quality relation > on Р, that satisfies the axioms of the partial

order.

The algorithm А:SР should be found such that:

• program p=A(s), pP, satisfies the specification sS,

• p is the best (in the sense >) program among {р|р=A(s)}

In such a way, the algorithm А:SР solves a program synthesis problem,

that is, for every specification sS, the algorithm А constructs an element

p=A(s), pP, which is the best program among all the programs solving a

specified problem s.

4.2.Computational model definition [6]. Given:

 The finite set X={x, у, ..., z} of variables for representation of different

computed values;

 The finite set F={а, b, ..., с} of functional symbols (operations, Fig.

1.a), m0 is the number of input variables, n0 is the number of output

variables;

 in(a)=(x1, ...,xm) is a set of input variables, out(a)=(y1, …,yn) is a set of

output variables (fig. 1), if ij yi yj.& xi xj

Model С=(X,F) is called simple computational model (SCM). Operation аF

describes the possibility to compute the variables out(а) from the variables

in(a), for example, with the use of a certain procedure. The model can be

graphically depicted (fig. 1)

 a

 y 1 y 2 . . . y n

 x 1 x 2 . . . x m
 x

 y

 a b

 x

 y

 a b

 x

 y

 a b

a) b) c)

Fig. 1 Examples of operations, variables and model

Let VX, FF be given. A set of functional terms T(V,F) is defined as follows:

1. If хV, then х is a term t, tT(V,F); in(t)={х}; out(t)={х}.

2. Let {t
1
, ..., t

s
} T(V,F) and аF, in(a)=(x1,...,xs) be given. The term

t=a(t
1
,...,t

s
) is included into T(V,F) if i(xiout(t

i
)), in(t) 1

s

i
U

in(t
i
),

out(t)=out(a). Here t=a(t
1
,...,t

s
) denotes that t is the term a(t

1
,...,t

s
).

A term is depicted as a tree that contains both operations and variables of the

term.

We say that a term t computes a variable у if уout(t). A set of terms

T(V,F) defines all the variables of the SCM that can be computed from V

variables. A set of terms TV

W

={tT(V,F)out(t)W} computes all those

variables from W that can be computed from V variables.

Any such subset R TV

W

 that xWtR(xout(t)) is called

(V,W)-plan. This (V,W)-plan defines an algorithm computing the variables W

from the variables V.

Here V and W denote the sets of input and output variables of the algorithm,

respectively. Everywhere further a recursively countable set of functional terms

is considered as a representation of an algorithm.

 In order to satisfy all the technological requirements to AT

representation, the axioms are not used, they are not formulated. Instead, AT is

representation by the set of all possible in AT derivation steps. These steps

(functions, modules) actually constitute the computational model.

Interpretation. Let VX be given. Interpretation I in the domain D is a

function that assigns to:

 to every variable xV an entry dx=I(x)D, dx is a value of the variable

x in the interpretation I,

 to every operation aF, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ..., yn}, a

computable function fa: D
m
 D

n
,

 to every term t=a(t1,t2,...,tm), a superposition of the functions is

assigned in accord with the rule I(a(t1,t2,...,tm))=fa(I(t1),I(t2),...,I(tm)).

If t=a(t1,t2,...,tm) is an arbitrary term, in(a)={x1, x2, ..., xm}, out(a)={y1, y2, ...,

yn}, then I(out(a))=val(t)=(d1,d2,...,dn)=fa(valx1(t1),valx2(t2),...,valxn(tn)).

Further it is assumed that for every function fa=I(a) there exists a module

(procedure) moda that can be used in a program to compute the function fa.

Correct interpretation. If there exist two different terms t1 and t2,

yout(t1)out(t2), in(t1)in(t2)V, then valy(t1)=valy(t2) in the interpretation I,

and the interpretation I is called correct interpretation. In the correct

interpretation for any variable y, any pair of the terms t1 and t2,

yout(t1)out(t2) yields the same value, valy(t1)=valy(t2).

For definition of mass computations this model should be extended by

inclusion of indexed operations and indexed variables (arrays). This technical

work can be easily done. Obviously, in this extended model, a mass algorithm

is represented by an infinite recursively countable set of functional terms.

A program that implements an algorithm, represented by a set of functional

terms, can be constructed with the procedure calls to moda in the order not

contradicting to the information dependences between the operations imposed

by the terms structure. Usually, a run-time system is used to implement all the

calls in a proper order.

4.3. An example of knowledge base, i.e. partially defined AT. Below (Fig.

3) the example of the description of the application partially defined axiomatic

theory TRIANGLE is given. The partially defined axiomatic theory

TRIANGLE is the part of an axiomatic theory GEOMETRY. The axiomatic

theory TRIANGLE does not describe the whole theory GEOMETRY, but only

that its part which provides the solution of the problem, formulated in Fig. 2.

Actually, the TRIANGLE is assembled out of the objects of GEOMETRY. The

problem formulation defines:

 the sets of input V={x,z,,} and output W={s} variables of the problem,

 the necessary partial AT in which only this problem can be solved is

assembled out of notions, valid for problem formulation and found in the

active knowledge base.

An algorithm of the formulated problem solution is derived on the partial AT

and represented here as the set of two functional terms t1 and t2.

 If some another problem is needed to be solved then new suitable modules

and variables should be included into the AT for this problem solution.

 Figure 2. Problem formulation Figure 3. Partial axiomatic theory

TRIANGLE

The capability to create similar knowledge base, to describe and to apply it

constitutes the nature of the new literacy for active knowledge description.

 Next time it is necessary to draw the attention, that computational model

cannot contain unknown solution of a problem. It contains only well-known

units of knowledge (ready-made modules). This means, that with the use of the

method of structural program synthesis any user will be able to solve a problem

with the quality equal to the quality of the best known solution.

4.4.Particle-In-Cell method. Particle-In-Cell method (PIC) is widely used for

numerical modeling in physics and chemistry [10,16]. But PIC is applied

individually to the solution of an individual problem of numerical modeling.

Therefore, now the PIC application cannot be formally described as a more or

less complete AT. Fortunately, the methods of PIC parallel implementation are

now well known and can be formally described within a partially described

AT. This permits to generate a framework for solution of a certain problem of

numerical modeling in which a user develops the sequential fragments of the

codes whereas the whole parallel program is automatically

assembled/generated out of them, for more details see [10,15].

 Parallel implementation of PIC includes parallel implementation such

sophisticated system algorithms as dynamic resources allocation, processes

migration, dynamic load balancing, dynamic tuning of an application program

to all the available resources, etc. Clearly, that solution of these problems

h y h x

z

y

x

V={x,z,,}; W={s}.
t1 =f1(x,d1(z,a(,)));
t2 =f2(z,d2(x,a(,))); a

y
zx

s

p

d 2

f2
h x h z

h yd 1

f1

b

g

should be formally described within a partially described AT.

4.5. LuNA project. The above described approach was implemented within the

LuNA project of fragmented programming system [10,11,13,15]. LuNA project

is directed to the elimination of parallel programming from the process of large

scale numerical models development. In fact LuNA is the system for

implementation of AT, described as computational model.

The LuNA fragmented programming system makes:

 accept as input the knowledge description of an object domain

(computational model here) and the lists of input and output variables,

 a desired numerical algorithm(s) of a problem solution is derived and

represented as recursively countable set of functional terms [17, 6]

 the desirable program implementing the derived algorithm is automatically

generated. Both algorithm and program possess by all the

desired/specified pragmatic properties (to be executed in parallel, dynamic

load balancing, dynamic tuning to all the available resources, etc.

Massivity and regularity of numerical algorithms allow generating parallel

programs of acceptable quality. One of the serious problem of LuNA

implementation is the replacement of the well-known in sequential

programming system algorithms by distributed system algorithms with local

interactions (DSALI), especially DSALI for distributed resources allocation,

optimization of the generated program execution, dynamic load balancing and

many others problems of dynamic optimization. LuNA is under permanent

modification.

 Now LuNA is able already to generate practical parallel programs

implementing different application of PIC methods for large-scale simulation.

4.6. New literacy. Now the new incipient literacy, based on the capability of a

human being to create, to understand and to apply AT is arising. Technically,

new writing language (AT writing) may contain the facility for sets of modules

and variables description, like this is done in LuNA. New literacy (AT-literacy)

includes also the ability to create a proper AT.

Earlier, the human population was divided into the following groups:

 the literate people which were able to read and to write texts,

 the semiliterate people which were able to read but not to write texts,

 the illiterate people which could neither read nor write the texts.

The current human population also begins to become stratified, dividing into

the following groups:

 the illiterate people which mostly look at the screens and press the

buttons, may be, they know phonetic alphabet and are able to read the

text. They are usually not able to write reasonable texts.

 the semiliterate people who are able to read and to write phonetic texts.

They know some systems of passive knowledge representation and are

able to read and to adopt the knowledge in the passive representation,

 the literate people, who are able to operate with ATs and, certainly, will

be able to create, to process, to understand and to utilize the knowledge

in the active representation, in AT writing.

 The current phonetic writing provides the accumulation of the knowledge

in a passive form. As a rule, with the use of this literacy a human being is able

to adopt and to apply the knowledge in one object domain, only.

 The AT-literacy will practically infinitely extend the abilities of a human

being to adaptation of new object domains. This literacy will substantially

change the representations of new scientific and industrial technologies. AT

writing should provide at least a description of recursively countable sets of

modules and variables.

 Instead of an object domain adaptation in all its details, only the ability to

formulate a problem will be needed. In this manner, for instance, 10 object

domains can be adopted.

 The ability to formulate the problems will be the basis of education in the

future. Only a few people, good mathematicians, also experienced in parallel

computing technologies, will be doing by the most interesting work, i.e., the

development of the active knowledge bases.

5. Conclusion
Models of parallel computation are now successfully utilized in scientific and

industrial modeling. Above consideration demonstrates that these models will

be applied for modeling social phenomena too. AT writing will co-exists in

parallel with phonetic writing.

 It seems, that next 50 or may be 100 years and even more IT community

will be doing by the creation of active knowledge bases: transformation of

currently accumulated passive knowledge bases into active form and creation

new one. This is not single-step process. The sphere of programming systems

application will be narrowing and instead the systems, implementing AT (like

LuNA), should be developed.

 Finally, I would like to remark the following. The human society on its

way to more progressive organization meets many problems. Current American

movies often frighten us by extraterrestrials, monsters, etc. But new literacy is

really far more terrible thing, bad dream, that threaten to the humanity by

degradation (human population moronization) in next one or two centuries,

because with the use of active knowledge technology human beings do not

need to think.

 It is clear, that the uncontrolled development of any scientific discipline,

including such inoffensive thing as literacy, can lead to humanity

self-destruction. Therefore, united nations and states must provide a global

control on applications of any new scientific result.

 Hope, I am not fully right and this prediction will not be proved.

References
1. I.B.Zadykhailo, Sostavlenie tsiklov po parametricheskim zapisyam

spetsialnogo vida. //Zhurnal vychislitelnoi mathematiki i

mathematicheskoi physiki Vol.3, No.2, (1963), 337-357 (in Russian).

2. Z.Manna, R.Waldinger, Synthesis: dreams programs. //IEEE Tr. on SE,

Vol. SE-5, (1979), 294-398.

3. Yu.L.Ershov, S.S.Goncharov and Sviridenko D.I., Semantic programming.

Information Processing: Proc. IFIP 10th World Comput. Congr. Ser. 10. —

Amsterdam, (1986), 1113–1120.

4. F.Giannesini, H.Kanoui, R.Pasero, M.Caneghem, Prolog, International

Computer Science Series, Addison-Wesley, 1986

5. Genesereth, M.R. and Nilsson, N.J., Logical Foundation of Artificial

Intelligence, Morgan Kaufmann, Los Altos, California, 1987.

6. V.A.Valkovskii, V.E.Malyshkin, Synthesis of Parallel Programs and

Systems on the Basis of Computational Models //Nauka, Novosibirsk,

1988, 128 p. (In Russian. Sintez parallel’nykh programm i sistem

na vychislitel’nykh modelyakh)

7. A.N.Andrianov, K.N.Efimkin, I.B.Zadykhailo, Nonprocedural Language

for Mathematical Physics //Programming and Computer Software

Vol.17, No.2, (1992), 10-22.

8. A.N.Andrianov, K.N.Efimkin, V.Y.Levashov, I.N.Shishkova, The Norma

language application to solution of strong nonequilibrium transfer process

problem with condensation of mixtures on the multiprocessor system,

Lecture Notes in Computer Science, Springer, Vol.2073, (2001),

502-510.

9. V.Malyshkin, Assembling of Parallel Programs for Large Scale Numerical

Modeling, IGI Global, USA, Handbook of Research on Scalable

Computing Technologies, Chapter 13, (2010) 295 – 311.

10. Kraeva M.A., Malyshkin V.E., Assembly Technology for Parallel

Realization of Numerical Models on MIMD-Multicomputers. // Future

Generation Computer Systems, Elsevier Science, Vol. 17, No. 6,

(2001), 755-765

11. S.Kireev and V.Malyshkin, Fragmentation of numerical algorithms for

parallel subroutines library // The J. of Supercomputing, Springer, Vol.

57, No. 2, (2011), 161-171

12. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault,

T., Kurzak, J., Langou, J., Lemarinier, P., Ltaeif, H., Luszczek, P.,

YarKhan, A., Dongarra, J., Flexible Development of Dense Linear Algebra

Algorithms on Massively Parallel Architectures with DPLASMA,

Proceedings of the Workshops of the 25th IEEE International Symposium

on Parallel and Distributed Processing, IEEE, Anchorage, Alaska, USA,

(2011), 1432-1441.

13. Malyshkin V. How to Create the Magic Wand. Currently Implementable

formulation of the Problem. // In the Proceedings of the 5-th SoMeT Int.

Conference on New Trends in Software Methodologies, Tools and

Techniques, IOS Press, Vol. 147, pp. 127-132. 28-30 September 2006,

Quebec, Canada.

14. Victor Malyshkin, Two approaches to Program Synthesis or

Implementation of Partially Defined Theories // Proceedings of the 11-th

Int. Conference on New Trends in Software Methodologies, Tools and

Techniques, IOS Press, USA, Vol. 246, (2012), 285-291.

15. V.E.Malyshkin, V.A.Perepelkin. The PIC implementation in LuNA system

of fragmented programming // The Journal of Supercomputing, Springer,

Volume 69, Issue 1, July 2014, pp 89-97.

16. S.E.Kireev, A Parallel 3D Code for Simulation of Self-gravitating

Gas-Dust Systems, Springer, LNCS 5698 (2009), 406–413

17. S.C.Kleene. Introduction to Metamathematics. // Princeton(N.J.), USA,

1952.

