
Noname manuscript No.
(will be inserted by the editor)

Scalable Distributed Data Allocation in LuNA
Fragmented Programming System

Victor Malyshkin · Vladislav
Perepelkin · Georgy Schukin

Received: date / Accepted: date

Abstract The paper presents a scalable distributed algorithm for static and
dynamic data allocation in LuNA fragmented programming system. LuNA is
intended for automation of construction of parallel programs, which imple-
ment large-scale numerical models for multicomputers with large number of
computing nodes. The proposed algorithm takes into account data structure of
the numerical model implemented, provides static and dynamic load balancing
and can be used with various network topologies.

Keywords scalable distributed system algorithm, dynamic data allocation,
distributed algorithms with local interactions, fragmented programming
technology, fragmented programming system LuNA

1 Introduction

Implementation of numerical models on multicomputers with large number of
computing nodes is a challenging problem in the domain of high-performance
parallel computing. To achieve good efficiency and scalability of parallel pro-
grams dynamic load balancing and/or effective resources allocation strategy is
necessary. In the light of growing size of multicomputers (in terms of memory
capacity, number of cores, etc.) new system algorithms for data processing

This work was supported by Russian Foundation for Basic Research (grants 14-07-00381 a
and 14-01-31328 mol a).

V. Malyshkin, V. Perepelkin, G. Schukin
Institute of Computational Mathematics and Mathematical geophysics SB RAS, Novosi-
birsk, Russia
E-mail: {malysh, perepelkin, schukin}@ssd.sscc.ru

V. Malyshkin, V. Perepelkin
Novosibirsk State University, Novosibirsk, Russia

V. Malyshkin, G. Schukin
Novosibirsk State Technical University, Novosibirsk, Russia



2 V.E. Malyshkin, V.A. Perepelkin, G.A. Schukin

and computations organization are to be developed. To simplify construction
of parallel programs, capable of achieving high performance, LuNA system
[1–3] is being developed.

In LuNA an application algorithm is represented as two sets: a set of im-
mutable data pieces (data fragments, DF) and a set of side-effect free com-
putational processes (computational fragments, CF). Each DF is produced by
one CF and may be used as an input by other CFs; each CF requires values of
all its input DFs to be executed and is executed only once. In LuNA a program
is executed by a run-time system, which performs DFs and CFs migration be-
tween processing elements (PEs, i.e. computing nodes of a multicomputer) in
order to transmit input DFs to each CF and to equalize workload.

Efficiency of LuNA program execution (in terms of running time, memory
consumption, etc.) depends on the quality of CFs and DFs distribution on PEs.
In the paper authors propose a scalable distributed algorithm for dynamic DFs
and CFs allocation, which is employed by LuNA system.

2 Related Works

The problem of efficient and scalable data allocation is actively researched.
Worth mentioning are scalable diffusion-like algorithms ([6–8]), since they do
not require global interactions, but they lack concerning data structures, bal-
ancing speed and tolerate global imbalance with low load gradient.

Data allocation problems are also faced in distributed databases ([12–15])
and cloud services ([16–18]). Due to relatively small number of objects to
distribute and low migration rates, these systems take advantage of centralized
algorithms, which are, although, not scalable to large number of allocation
units (such as CFs or DFs), nor to multicomputers with large number of PEs.

Good efficiency can be achieved when allocating data of particular struc-
tures, such as meshes ([19,20]). However, application domain of these algo-
rithms is limited to these data structures.

Worth mentioning are static analysis algorithms, employed in compilers
([9–11]). Their limitation is static decision making (at compile time).

Such algorithms as [21,22] do not take data structure into account and do
not solve the problem of data search. In [15] a relatively scalable algorithm is
presented, but it employs global communications, which should be avoided.

3 Requirements for Data Allocation Algorithm

In order to provide high efficiency and scalability of a parallel program, data
allocation algorithm should:

– Provide approximately equal load of available PEs (static and dynamic load
balancing) in terms of computational time, memory consumption, etc.

– Reduce amount of communications by taking data structure into account
– Tune to behavior of phenomena being modeled



Scalable Data Allocation in LuNA 3

– Be decentralized and mostly use short-distance communications

4 Distributed Algorithm of Data Allocation

4.1 Peculiarities of Data Allocation in LuNA System

In LuNA system at any time moment each DF and CF has a single PE assigned
with it, called residence. DF residence is a PE, on which the DF value is stored.
CF residence is a PE, on which the CF will be executed. Also, in LuNA each
DF and CF are identified by unique (program-wide) identifiers.

One of the responsibilities of LuNA system is to deliver values of input DF
of every CF to the residence of the CF. For each CF all identifiers of its inputs
DFs are known. To enable DF lookup, LuNA run-time system transfers DF
values to their residences, as well as provides an ability to search a residence
by DF (or CF) id.

Dynamic load balancing in LuNA is a process of residence reassigning in
order to equalize workload. Reassigning a residence causes DFs and CFs mi-
gration, which is also performed by LuNA run-time system.

4.2 Data Allocation Problem Formulation

Since the residence mechanism is the same for both CFs and DFs, only DFs
are considered below. The problem of data allocation is formulated as follows.
Let D be a set of all DFs in a program, and P be a set of all PEs. It is required
to build a function r : (D,T )→ P , which dynamically assigns each df ∈ D to
its residence p ∈ P for each time moment t ∈ T (T denotes a set of all time
moments of program execution and can be considered as T = [0; 1], where 0
corresponds to execution begin, and 1 corresponds to execution end).

Consider an example. Let at time moment t=0 there is an initial DFs
distribution r1 : D → P . At time moment t′ ∈ (0; 1) a workload imbalance
was detected and balancing was performed, producing a new DFs distribution
r2 : D → P , which was unchanged until the end of program execution. For
this example function r would be defined as follows:

r(df, t) =

{
r1(df), t < t′

r2(df), t >= t′

4.3 The Proposed Algorithm of Data Allocation

It’s hard to automatically construct a function r that will lead to a good data
distribution, hence human assistance is beneficial. For that purpose definition
of r is divided into two steps. Firstly a user manually defines an intermediate
function v : D → V , where V is a set of identical nodes of a virtual multi-
computer. The virtual multicomputer is defined by its size (number of virtual



4 V.E. Malyshkin, V.A. Perepelkin, G.A. Schukin

Fig. 1 Computation time (in seconds) dependency on number of PEs.

nodes) and has a 1D lattice network topology (mesh or torus). The function
v assigns each DF a virtual residence, which is static, i.e. does not depend
on time. Secondly a function p : (V, T ) → P is defined, which dynamically
assigns a physical PE to a virtual node. This function is dynamically defined
by LuNA run-time system. In such a way, a residence of a DF df at a time
moment t is defined as r(df, t) = p(v(df), t).

To define function v a user has to manually solve a simplified problem of
DFs distribution. The simplifications are the absence of dynamism and virtual
multicomputer heterogeneity, and the linearity of the virtual network topology.
Despite the fact that v definition may be not easy, it is still much easier than
solving the original problem.

For function r to meet the requirements from section 3, function v should:

– Reduce neighborhood violation, i.e. total distance between virtual resi-
dences of a CF and its input DFs.

– Reduce load imbalance, i.e. total amount of computations each virtual node
holds.

The criteria presented do not form the full system of requirements, yet they
can be useful both to judge on quality of a given v and to get the idea of a good
v. In particular, it is essential not only to reduce total load imbalance, but also
to reduce load imbalance at each time moment. This point can be illustrated by
a following simple example. Consider a 1D explicit finite-differential scheme.
Due to immutability of DFs the set of DFs would be D = {dfi,t}, where i is a
space coordinate, and t is a time coordinate. Both v(dfi,t) = i and v′(dfi,t) = t
provide equal load for each virtual node, but in the first case all the nodes are
able to operate in parallel, while in the second case only sequential execution
is possible due to data dependencies (see Fig. 1).



Scalable Data Allocation in LuNA 5

Once v is defined, a virtual multicomputer is dynamically mapped to a
physical multicomputer by LuNA run-time system, thus defining function p.
Function p is constructed in accordance with physical network topology, i.e.
two neighboring virtual nodes are assigned to the same PE or to PEs, neigh-
boring in physical topology. This neighboring requirement is easy to satisfy
for common network topologies, such as multi-dimensional lattice, fat tree or
cluster. Also, p should be constructed in a way, when every PE receives ap-
proximately the same number of virtual nodes (and, thus, about the same
amount of workload).

Definition of v as a separate intermediate step allows user to express his
knowledge on how to efficiently distribute data. Based on this knowledge LuNA
run-time system constructs actual distribution.

4.4 Dynamic Load Balancing

The proposed algorithm supports dynamic load balancing. The load balancing
algorithm is based on a well-known diffusion-type dynamic load balancing. It
is assumed that workload of PEs is periodically estimated or measured in
some way, and sent to all neighboring PEs. Once difference of workloads of
two neighboring PEs exceeds a threshold value, a balancing procedure, which
transfers workload from the overloaded PE to the underloaded one, is started.

For the proposed data distribution algorithm transferring workload is per-
formed as follows. Some of virtual nodes, currently mapped to the overloaded
PE are reassigned to the underloaded PE. This causes reassigning of CF and
DF residences and, as a consequence, CFs and DFs migration. Balancing must
not violate the above-mentioned neighboring requirement (which is always pos-
sible).

4.5 Peculiarities of the Proposed Algorithm

Since load balancing is implemented as residences reassignment, the atomic
unit of load balancing is a group of DFs and CFs, mapped to single virtual
node. Therefore, number of virtual nodes has to be times greater than number
of physical nodes in order to provide granularity for balancing.

5 Experiments

To investigate the efficiency of the proposed algorithm an explicit finite differ-
ence method for 3D Poisson equation solution [5] was chosen as a test appli-
cation.

The experiments were conducted on MVS-10P cluster of Joint Supercom-
puter Center of RAS (each cluster node has two Xeon E5-2690 processors with
64 Gb RAM; nodes are connected by Infiniband FDR network). GCC 5.2.0
compiler and MPICH 3.1.4 communication library were used. Each test run



6 V.E. Malyshkin, V.A. Perepelkin, G.A. Schukin

 0

 5

 10

 15

 20

 25

1 2 4 8 16 32 64

mpi

cart

hilbert

Fig. 2 Computation time (in seconds) dependency on number of PEs.

Fig. 3 Average DF communication distance at different time moments. Different colors
denote different PEs.

consisted of 100 iterations of FDM on 400× 400× 400 mesh, decomposed into
8× 8 fragments.

Two LuNA versions were tested: hilbert and cartesian. They differ in the
way virtual nodes are mapped to physical PEs. The first version employs Hilber
space-filling curve, while the second one uses naive row-by-row mapping. Also,
for comparison a straightforward MPI implementation of the same method
was developed.

In Fig. 2 total computation times are shown. All three implementations
demonstrate approximately the same efficiency with a slight advantage of the
hilbert version over the cartesian one. Fig. 3 demonstrates the average distance
(in PEs hops) of DFs communication for given PE (different colors denote
different PEs). The hilbert version is more efficient, providing approximately
twice less distance then the cartesian one.



Scalable Data Allocation in LuNA 7

6 Conclusion

The problematics of data distribution automation for implementation of large-
scale numerical models for supercomputers is considered. An algorithm for dy-
namic data allocation for LuNA fragmented programming system is proposed.
Performance tests of the algorithm are presented. The proposed algorithm is
designed for large multicomputers (thousands of PEs and more). It is scalable,
allows dynamic workload balancing and considers supplementary information
on application data structure. Further research is to be focused on overcoming
limitations of the algorithm: static nature of the supplementary information
and single dimension of neighborhood description.

References

1. Malyshkin, V.E., Perepelkin, V.A.: LuNA Fragmented Programming System, Main Func-
tions and Peculiarities of Run-Time Subsystem. In: PaCT 2011, LNCS, vol. 6873, pp.
53–61. Springer, Heidelberg (2011)

2. Malyshkin, V.E., Perepelkin, V.A.: Optimization Methods of Parallel Execution of Nu-
merical Programs in the LuNA Fragmented Programming System. J. Supercomputing,
vol. 61, no. 1, pp. 235–248 (2012)

3. Malyshkin, V.E., Perepelkin V.A.: The PIC Implementation in LuNA System of Frag-
mented Programming. J. Supercomputing, vol. 69, no. 1, pp. 89–97 (2014)

4. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of Numer-
ical Models on MIMD-Multicomputers. J. Future Generation Computer Systems, vol. 17,
no. 6, pp. 755–765 (2001)

5. Kireev, S.E., Malyshkin V.E.: Fragmentation of Numerical Algorithms for Parallel Sub-
routines Library. J. Supercomputing, vol. 57, no. 2, pp. 161–171 (2011)

6. Kraeva, M.A., Malyshkin, V.E.: Dynamic Load Balancing Algorithms for Implementation
of PIC Method on MIMD Multicomputers. J. Programmirovanie, no. 1, pp. 47–53 (in
Russian) (1999)

7. Hu, Y.F., Blake, R.J.: An Improved Diffusion Algorithm for Dynamic Load Balancing.
J. Parallel Computing, vol. 25, no. 4, pp. 417–444 (1999)

8. Corradi, A., Leonardi, L., Zambonelli F.: Performance Comparison of Load Balancing
Policies Based on a Diffusion Scheme. In: Euro-Par’97 Parallel Processing, pp. 882–886.
Springer, Heidelberg (1997)

9. Anderson, J.M., Lam, M.S.: Global Optimizations for Parallelism and Locality on Scal-
able Parallel Machines. In: ACM-SIGPLAN PLDI’93, pp. 112–125. ACM New York, USA
(1993)

10. Li, J., Chen, M.: The Data Alignment Phase in Compiling Programs for Distributed-
Memory Machines. J. Parallel and Distributed Computing, vol. 13, no. 2, pp. 213–221
(1991)

11. Lee P.: Efficient Algorithms for Data Distribution on Distributed Memory Parallel Com-
puters. J. IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 8, pp.
825–839 (1997)

12. Yu-Kwong Kwok, Ahmad, I.: Design and Evaluation of Data Allocation Algorithms for
Distributed Multimedia Database Systems. IEEE Journal on Selected Areas in Commu-
nications, vol. 14, no. 7, pp. 1332–1348. IEEE (1997)

13. Iacob, N.M.: Fragmentation and Data Allocation in the Distributed Environments. An-
nals of the University of Craiova - Mathematics and Computer Science Series, vol. 38,
no. 3, pp. 76–83 (2011)

14. Jagannatha, S., Geetha, D.E., Suresh Kumar, T.V., Rajani Kanth, K.: Load Balanc-
ing in Distributed Database System using Resource Allocation Approach. J. Advanced
Research in Computer and Communication Engineering, vol. 2, no. 7, pp. 2529–2535
(2013)



8 V.E. Malyshkin, V.A. Perepelkin, G.A. Schukin

15. Honicky, R.J., Miller E.L.: Replication Under Scalable Hashing: A Family of Algo-
rithms for Scalable Decentralized Data Distribution. In: 18th International Parallel and
Distributed Processing Symposium (2004)

16. Alicherry, M., Lakshman, T.V.: Network Aware Resource Allocation in Distributed
Clouds. In: INFOCOM 2012, pp. 963–971. IEEE (2012)

17. AuYoung, A., Chun, B.N., Snoeren, A.C., Vahdat, A.: Resource Allocation in Federated
Distributed Computing Infrastructures. In: First Workshop on Operating System and
Architectural Support for the On-demand IT InfraStructure (2004)

18. Raman, R., Livny M., Solomon, M.: Matchmaking: Distributed Resource Management
for High Throughput Computing. J. Cluster Computing, vol. 2, no. 1, pp. 129–138 (1999)

19. Reddy, C., Bondfhugula, U.: Effective Automatic Computation Placement and Data Al-
location for Parallelization of Regular Programs. In: 28th ACM International Conference
on Supercomputing, pp. 13–22. ACM New York, USA (2014)

20. Baden, S.B., Shalit, D.: Performance Tradeoffs in Multi-tier Formulation of a Finite
Difference Method. In: ICCS 2001, LNCS, vol. 2073, pp. 785–794. Springer, Heidelberg
(2001)

21. Ken-ichiro Ishikawa. ASURA: Scalable and Uniform Data Distribution Algorithm for
Storage Clusters. Computing Research Repository, abs/1309.7720 (2013)

22. Chawla, A., Reed B., Juhnke, K., Syed, G.: Semantics of Caching with SPOCA: A
Stateless, Proportional, Optimally-Consistent Addressing Algorithm. In: USENIX An-
nual Technical Conference 2011, pp. 33–33. USENIX Association (2011)

23. Lowder, J.K., King, P.J.H.: Using Space-Filling Curves for Multi-dimensional Indexing.
In: Advances in Databases, LNCS, vol. 1832, pp. 20–35. Springer, Heidelberg (2000)

24. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering Prop-
erties of the Hilbert Space-Filling Curve. J. IEEE Transactions on Knowledge and Data
Engineering, vol. 13, no. 1, pp. 124–141 (2001)


