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Abstract. Automatic synthesis of efficient scientific parallel programs for su-

percomputers is in general a complex problem of system parallel programming. 

Therefore various specialized synthesis algorithms and heuristics are of use. 

LuNA system for automatic construction of distributed parallel programs pro-

vides a basis for accumulation of such algorithms to provide high-quality paral-

lel programs generation in particular subject domains. If no specialized support 

is available in LuNA for given input, then the general synthesis algorithm is 

used, which does construct the required program, but its efficiency may be un-

satisfactory. In the paper a specialized run-time system for LuNA is presented, 

which provides runtime support for dense linear algebra operations implementa-

tion on distributed memory multicomputers. Experimental results demonstrate, 

that automatically generated parallel programs of the class outperform corre-

sponding ScaLAPACK library subroutines, which makes LuNA system practi-

cally applicable for generating high performance distributed parallel programs 

for supercomputers in the dense linear algebra application class. 

Keywords: Parallel Programming Automation, Fragmented Programming 

Technology, LuNA System, Distributed Dense Linear Algebra Subroutines. 

1 Introduction 

This paper is devoted to the problem of efficient parallel program construction auto-

mation in the field of high performance scientific computations on supercomputers. 

Efficiency is a mandatory requirement for such programs. Otherwise costly high per-

formance computing resources are wasted. Provision of efficiency of a parallel pro-

gram is a hard problem (NP-hard in general case), which makes such program con-

struction automation challenging. The complexity of efficiency provision arises from 

the necessity to decompose data and computations and organize parallel data pro-

cessing in such a way that as much of hardware resources as possible are loaded fully 

and evenly with useful computations. Manual development of efficient parallel pro-

grams requires knowledge of distributed hardware architecture, familiarity with 

methods and tools for distributed parallel programming, skills in system parallel pro-

gramming. Such expertise is different from the expertise in the subject domains, to 
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which computations are related. Manual parallel programs development compels 

users to possess expertise in both domains. This conditions the importance of program 

construction automation tools, which allow one to describe computations with a high-

er level programming language (or an API), and expect an efficient parallel program 

to be constructed and executed automatically. Such an approach allows encapsulating 

much of the expertise a parallel programmer needs to possess into a programming 

system and automatically apply the encapsulated knowledge for program construc-

tion. Since no general solution exists, of practical interest are particular and heuristic 

solutions, capable of providing satisfactory efficiency for certain application classes. 

Also of practical interest are approaches, aimed at accumulation and automatic appli-

cation of various particular solutions. 

Nowadays the need in parallel programming automation means tends to increase, 

since supercomputers’ hardware and software grow more complex. Heterogeneity of 

hardware increases, number of nodes and cores per node increases, network and 

memory subsystems become more lagging behind cores and therefore more critical, 

co-processors usage becomes essential to maximize performance, etc. Taking all this 

into account is both necessary and hard, so research in the field of parallel program-

ming automation is more and more demanding. 

Many programming systems, languages and tools exist and evolve to assist or re-

place programmers [1,2]. 

Charm++ [3,4] is an open-source parallel system which consists of distributed run-

time system which is able to execute a distributed computational tasks (chares) graph 

on a supercomputer. Each task is able to communicate with others by sending and 

receiving messages. An applied programmer has to program communications between 

tasks by hand using low-level C++ interface. The task-based computational model, 

employed in Charm++ allows using particular system algorithms to support various 

classes of applications, but in general the peculiarities of the model make Charm++ 

programs partially opaque to the system because of low-level message passing means 

employed. That impedes Charm++’s capability to accumulate particular system algo-

rithms. 

PaRSEC [5] is a parallel programming system, designed specifically for automated 

generation of efficient parallel programs, which implement linear algebra operations. 

An applied programmer describes a tasks graph using the built-in high level language. 

This simplifies the process of development of high performance parallel programs. 

PaRSEC is able to generate programs only for the restricted class of linear algebra 

algorithms. 

Legion [6], Regent [7–9] and LuNA [10] systems are also able to execute an algo-

rithm described as a task graph on a supercomputer. These systems use general sys-

tem algorithms to distribute tasks to computing nodes and execute the graph. The 

systems also provide powerful means to provide specialized support of program con-

struction and execution, because execution control algorithms are excluded from the 

algorithm description, thus program construction and execution can be varied freely 

to support efficient execution of applied algorithms in particular subject domains. The 

systems are therefore suitable for accumulating various system algorithms for differ-

ent subject domains. 
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It can be seen that a great effort is being put into automating programming. It is al-

so clear that the efficiency problem is far from being solved for many subject do-

mains. 

In the presented work we employ LuNA as the system capable for particular sys-

tem algorithms accumulation. LuNA is a system for automatic construction of scien-

tific parallel programs for multicomputers. It is an academic project of the Institute of 

Computational Mathematics and Mathematical Geophysics of the Siberian Branch of 

Russian Academy of Sciences. This system is aimed at automatic construction of high 

performance distributed parallel programs for conducting numerical computations on 

supercomputers. It focuses on providing to a user an ability to describe computations, 

that need to be conducted, in a high-level platform-independent form. Also it provides 

some high level means (called recommendations) to express a programmer idea on 

how to organize efficient parallel execution on a supercomputer. This approach is 

based on the structured synthesis theory [11] and conforms to the active knowledge 

technology [12]. It allows to significantly reduce the complexity of efficient parallel 

program generation problem without the need for the programmer to do low-level 

parallel programming. Source code of LuNA system can be found in its public reposi-

tory
1
. 

In this paper we investigate how satisfactory efficiency can be achieved in LuNA 

by making a specific system support for a particular subject domain, namely, dense 

linear algebra operations. This support is implemented as a particular run-time sys-

tem, which is capable of execution of LuNA programs (or subprograms) of particular 

form, common for many dense linear algebra operations. The run-time system takes 

into account peculiarities of the operations to achieve high efficiency, comparable 

with that of ScaLAPACK, which is a widely used library for such operations. This 

demonstrates that LuNA system can be a useful tool for practical construction of high 

performance scientific programs for subject domains, reasonably supported by spe-

cialized system algorithms. 

The rest of the paper is organized as follows. Section 2 describes the proposed ap-

proach to support dense linear algebra operations in LuNA. Section 3 presents the 

experimental results, where LuNA performance is compared to that of ScaLAPACK 

on some operations. Conclusion ends the paper. 

2 Particular Execution Algorithms Approach 

2.1 Main Idea 

This section describes the overall idea of the proposed solution. For the class of nu-

merical algorithms particular distributed run-time system algorithms are developed 

and integrated to LuNA system. LuNA system analyzes the input algorithm descrip-

tion written in LuNA language and determines the class to which the input algorithm 

description belongs. Then LuNA compiler selects particular system algorithms which 

are used to automatically generate a parallel program by the input algorithm descrip-

                                                           
1  https://gitlab.ssd.sscc.ru/luna/luna 
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tion. The result of compilation is a C++ code, which can be compiled by a conven-

tional C++ compiler and linked against a library, which implements the run-time sys-

tem. Then it is able to be executed on a supercomputer. 

 In this paper only a single class of numerical algorithms is considered to demon-

strate the approach. This class contains widely used matrix algorithms such as LU, 

LL
T
, LDL

T
 and similar matrix factorization algorithms. One of the advantages of the 

approach is that it is possible to identify whether input algorithm belongs to the class 

or not. No sophisticated information dependencies analysis is required for that. 

2.2 Main Definitions and Class of Algorithms Description 

For further discussion the model of algorithm is described as it is one of the most 

important things when developing parallel programming systems. Firstly let some 

formal definitions be given. Secondly, the main idea of the model is given. Then the 

class of algorithms is described formally. 

Definition 1. A data fragment (DF) is a the following tuple: ⟨𝑁, 𝑉⟩, where N is a 

name (a regular string), V is an arbitrary value. 

Definition 2. DFs array is the following set: {𝑥|𝑥 = ⟨ℎ1, . . . , ℎ𝑁⟩, 𝑑𝑓⟨ℎ1,...,ℎ𝑁⟩, ∀𝑖 ∈

{1, . . . , 𝑁}: 0 ≤ ℎ𝑖 < 𝑀𝑖 , ℎ𝑖 ∈ ℕ0}, where 𝑑𝑓⟨ℎ1,...,ℎ𝑁⟩ is a DF, 𝑀𝑖 is the size of i-th 

dimension of the array, ⟨ℎ1,. . . , ℎ𝑁⟩, 𝑁 ∈ ℕ,∀𝑖 ∈ {1, . . . , 𝑁}: 0 ≤ ℎ𝑖 < 𝑀𝑖  is a tuple of 

array element indices. 

Definition 3. Let concept of task argument now be defined as follows: 

1. Every DF is a task argument 

2. The following tuple is a task argument: ⟨𝐴, ⟨ℎ1,. . . , ℎ𝑁⟩⟩, where A is an N-

dimensional array of DFs. This kind of argument is also called array-argument. 

Definition 4. A task is the following tuple: ⟨𝑛, 𝐼, 𝑂⟩, where n – name (regular 

string), 𝐼 = {𝑎1,. . . , 𝑎𝑀},𝑀 ∈ ℕ0- set of task arguments called input arguments, 

𝑂 = {𝑏1,..., 𝑏𝐾}, 𝐾 ∈ ℕ0 - set of task arguments called output arguments. 

Definition 5. Algorithm is a tuple ⟨𝐴, 𝐷, 𝑇⟩, where A – is a finite set of DFs arrays, 

D – is a finite set of DFs, T – is a set of tasks. 

Let the main idea of the algorithm model now be explained. An applied program-

mer describes the data processed by a numerical algorithm with a set of DFs and DFs 

arrays (the description is the input for the system). Each DF is associated with a value 

which may store arbitrary data. For example, the value of some DF may store a dense 

matrix block, a vector part or a single value of some type. For each DFs array the 

applied programmer provides a mapping function. The mapping function maps DFs 

array elements to some memory location depending on array element indices and the 

computing node to which an array element is distributed. Many DFs array elements 

may be mapped to the same memory location. In this case, the applied programmer is 

responsible for avoiding collisions, i.e. when different elements, mapped to the same 

location, are in use at the same time span. Then the applied programmer describes a 

set of tasks. Each task transforms the values of its input DFs to the values of its output 
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DFs by calling associated external routine. Such routine is implemented by the ap-

plied programmer with some conventional language, such as C, C++ or Fortran. For 

example, there may be implemented an external routine that multiplies two dense 

matrix blocks, represented as DFs. Multiple tasks may be associated with the same 

external routine. At run-time this external routine with the values of the input DFs 

forms a task that can be executed by LuNA system when all values of the input DFs 

are computed. After the task is executed the values of its output DFs become comput-

ed, so some other tasks may become executable. 

Consider now a class of algorithms that is handled by the developed particular sys-

tem algorithms. The class of algorithms consists of algorithms that meet the following 

requirements: 

1. Every task within the algorithm has either only one output array-argument or all ar-

ray element indices of all output array-arguments of the task are pairwise equal. 

2. Dimension of all DFs arrays is the same, and the sizes of each dimension are pair-

wise equal. 

For example, Cholesky (LL
T
) factorization algorithm mentioned above meets the 

requirements. Also this class contains many other matrix algorithms such as LU fac-

torization, LDL
T
 factorization and others. 

2.3 Compiler 

One of the important components of the developed LuNA system extension is a com-

piler that checks if the input algorithm description belongs to the supported class of 

algorithms. If the input numerical algorithm meets the above requirements the com-

piler generates a parallel program according the following principle. For each task 

described within the input algorithm description compiler generates a C++ lambda 

function (it is called run-time task). The body of the lambda-function consists of a 

C++ call statement of the routine associated with the task. Then compiler generates a 

call to the run-time library that implements distributed execution of the input algo-

rithm (the execution algorithm is described in Section 2.4). This call submits the task 

to the executor. 

At run-time a set of tasks with their arguments forms a bipartite directed acyclic 

tasks graph (DAG) which is submitted to a distributed executor implemented in the 

run-time library. The executor distributes DFs and DFs arrays to nodes and asynchro-

nously executes the tasks graph on the multicomputer. Fig. 1 shows the overall struc-

ture of generated program. 
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Fig. 1. Structure of generated program. 

2.4 Run-Time Library and Task Graph Execution 

Consider now the distributed tasks graph executor that is implemented in the run-time 

library. At first, consider the data distribution algorithm. The value of each DF (not an 

DFs array element) is stored in the memory of all computing nodes. Each DFs array is 

distributed according to the block-cyclic [13] principle. The parameters of the block-

cyclic distribution may be set by the applied programmer. The dimension of the 

block-cyclic distribution is equal to the dimension of the DFs arrays declared in the 

input algorithm description. 

 

Consider now the principle of tasks mapping to computing nodes and execution of 

the tasks graph. At run-time each task is mapped to the computing node to which its 

output DFs arrays elements is mapped (according the requirements indices of all out-

put array-arguments of a task are pairwise equal and thus all corresponding DFs array 

elements are mapped to the same computing node). If an input argument of a task is 

mapped to a different node, an asynchronous message is sent after the producer task 

execution. In addition, each computing node runs a receiver loop in a dedicated 

thread. When some task argument value is received, corresponding consumer tasks 

are found. When the values of all input arguments of a consumer task are obtained, it 

is executed. The process continues until all tasks are executed. 

3 Performance Evaluation 

To measure the performance of the implemented extension of LuNA system, a test 

implementation of the Cholesky factorization of a dense matrix was developed with 

LuNA language. Such factorization is an example of an algorithm with complex 

structure and information dependencies. For performance evaluation the same test 
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was implemented using a ScaLAPACK [14] implementation of Cholesky factoriza-

tion. ScaLAPACK is a widely used library, where Cholesky factorization is imple-

mented. Execution times of both implementations were compared. Both implementa-

tions used two-dimensional block cyclic distribution of the input matrix into square 

matrix of square blocks, and the block size was a parameter. OpenBLAS library (ver-

sion 0.3.15) [15] implementation of BLAS and LAPACK subroutines was used for 

both tests. Both implementations used right-looking blocked Cholesky factorization 

algorithm [16]. 

Two square dense double-precision matrices of sizes 32768 and 65536 were used 

as input data. For each of the matrices a number of experiments were conducted using 

different matrix block sizes ranging from 256 to 2048. Execution times of both tests 

were measured. 

Testing was conducted on MVS-10P cluster of the Joint Supercomputing Centre of 

Russian Academy of Sciences
2
 on a two-dimensional grid of 2×2 computing nodes. 

Each node contains 32 cores and 16 GB of memory. All 32 cores of each CPU were 

used in all tests. 

 Fig.2 shows execution times comparison of the ScaLAPACK and the LuNA 

implementations for the input matrix of sizes 32768 (left) and 65536 (right). 

 

   

Fig. 2. Performance evaluation result for a square matrix of 32768 (left) and 65536 (right) 

elements. 

Here in both cases the LuNA implementation outperforms the ScaLAPACK im-

plementation of Cholesky factorization (by 2.4 times for matrix of 32768 elements 

and block size of 512 and by 2.1 for matrix of 65536 elements and block size of 

1024). 

The above results demonstrate that LuNA is able to generate an efficient parallel 

program from an algorithm description with complex information dependencies. The 

performance of the generated parallel program is approximately 2 times better than 

that of library developed by experts (for the studied test). 

                                                           
2  http://www.jscc.ru 
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4 Conclusion 

Automatic construction of efficient parallel programs generally requires different 

construction algorithms for different subject domains. LuNA system is capable of 

accumulating such algorithms. This ability was demonstrated by adding specialized 

support for dense linear algebra operations class. The achieved performance is com-

parable with that of a widely used library ScaLAPACK. This makes LuNA a practical 

tool for automatic construction of high performance distributed parallel programs for 

the applications class. Other classes of applications can also be particularly supported 

in LuNA in order to improve performance of automatically constructed programs if 

programs, constructed by general LuNA algorithms are not efficient enough. 

The work was supported by the budget project of the ICMMG SB RAS No. 0251-

2021-0005. 
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