
 МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ
 РОССИЙСКОЙ ФЕДЕРАЦИИ

 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ
 ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

 «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
Факультет информационных технологий

Кафедра параллельных вычислений
09.03.01 Информатика и вычислительная техника. Программная

инженерия и компьютерные науки

Обнаружение семантических ошибок
во фрагментированных программах для системы LuNA

при помощи технологии Model Checking

Выполнил: Усенко Никита Сергеевич

Научный руководитель: Власенко Андрей Юрьевич, к.т.н., доц. каф. ПВ ФИТ НГУ

Соруководитель: Матвеев Алексей Сергеевич, ст. преп. каф. ПВ ФИТ НГУ

 Новосибирск 2025 20.06.2025

Предметная область

LuNA (Language for Numerical Algorithms) — система, позволяющая упростить
рабочий процесс программиста за счет сокращения трудозатрат на создание
параллельных реализаций алгоритмов.

2/25

Фрагмент данных (ФД) – единица информации.

Фрагмент вычислений (ФВ) – порождаемая во время выполнения
программы единица работы.

Фрагмент кода (ФК) – пользовательская процедура (LuNA, C/C++).

Актуальность

Системе LuNA свойственны специфические виды ошибок.

- Имеется недостаток инструментальных средств
отладки.

- Встроенные средства зачастую не предоставляют
пользователю понятных сообщений об ошибках.

3/25

- диалоговая отладка (TotalView, Distributed Debugging Tool);

- сравнительная отладка (DVM);

- динамический анализ (Valgrind);

- статический анализ (CSA);

- анализ по трассе (Intel Message Checker);

- верификация модели программы (SPIN, TLC).

- …
4/25

Существующие методы и средства отладки
параллельных программ

1. Clang Static Analyzer (CSA)*

Используется для поиска
ошибок в программах на C/C++.

Анализирует исходный код на
этапе компиляции.

Позволяет находить утечки памяти,
неопределенное поведение,
ошибки при работе с памятью и т.д.

5/25* https://clang-analyzer.llvm.org

Примеры существующих решений
для автоматизированной отладки

https://clang-analyzer.llvm.org

2. Valgrind*

Инструмент динамического анализа.

Анализирует программу во время
выполнения.

Позволяет обнаруживать утечки
памяти, проводить профилирование,
анализировать использование памяти.

Примеры существующих решений
для автоматизированной отладки

6/25* https://valgrind.org

https://valgrind.org

3. Simple Promela INterpreter (SPIN)*

Инструмент для обнаружения ошибок в

параллельных программах методом

верификации на моделях.

Проводит поиск всех возможных состояний

системы и проверяет, удовлетворяют ли они

заданным свойствам.

* https://spinroot.com 7/25

Примеры существующих решений
для автоматизированной отладки

https://spinroot.com/

Цель и задачи

Цель

Проектирование и разработка системы отладки LuNA-программ методом

верификации на моделях.

Задачи
- Проанализировать ошибки, присущие фрагментированным программам.

- Разработать и протестировать программное средство, реализующее

обнаружение ошибок в LuNA-программах методом верификации на моделях.

- Интегрировать разработанное программное средство в существующую систему

автоматизированной отладки ADAPT*.

* Власенко А.Ю., Мичуров М.А., Царёв В.Д., Курбатов М.А. Построение комплекса автоматизированной отладки
фрагментированных программ // Вестник НГУ. Серия: Информационные технологии. 2024. Т.22, №1. С. 5–20.
https://doi.org/10.25205/1818-7900-2024-22-1-5-20 8/25

https://vk.com/away.php?to=https%3A%2F%2Fdoi.org%2F10.25205%2F1818-7900-2024-22-1-5-20&utf=1
https://doi.org/10.25205/1818-7900-2024-22-1-5-20

Научная новизна работы состоит в том, что метод Model Checking впервые

применен для автоматизированного обнаружения семантических ошибок во

фрагментированных программах.

Практическая ценность работы состоит в автоматическом обнаружении ошибок

в LuNA-программах во время разработки и повышении скорости выхода конечных

программных продуктов.

9/25

Свойства* моделей в методе Model Checking
- абстракция данных;

- конечность;

- корректность (модель соответствует исходной программе);

- адекватность (модель соответствует проверяемым свойствам).

10/25* Кларк Э.М., Грамберг О., Пелед Д. Верификация моделей программ :
 Model Checking. – 2002. – №1 (416). – С. 37-54.

Общая схема верификации на моделях

Исходная
программа

Модель
программы

Спецификация
проверяемых

свойств

Формальная
верификация

Отчет о
найденных
нарушениях

свойств
модели

11/25

 Верификатор SPIN, описание моделей
на языке Promela

LTL (Linear temporal logic) – логика
линейного времени.

Promela (Process Meta Language) –
недетерминированный язык , задача
которого описывать такие модели,
которые могут быть верифицированы.

SPIN используется для верификации
Promela-программ.

Найдется
состояние
 <>p

Верно всегда
 []p

В следующем
состоянии

Верно p до
наступления
условия q

Примеры свойств LTL

12/25

Разработка анализатора MC-analyzer

init – соответствует инициализации ФД. Увеличивает счетчик инициализаций ФД.

use – соответствует использованию ФД. Увеличивает счетчик использований ФД.

depends_on – соответствует зависимости по данным (для инициализации ФД необходим другой ФД).

enddef – соответствует концу блока видимости ФД.

destroy – соответствует рекомендации удаления. Увеличивает счетчик удалений.

inc_true – соответствует истинному условию. Увеличивает счетчик истинных условий в if/while.

inc_false – соответствует ложному условию. Увеличивает счетчик ложных условий в if/while.

Трансляция
из LuNA

в Promela

Верификация
системой SPIN

Модель
на Promela

Информация
о найденных

ошибках

Вспомогательные конструкции для описания моделей

13/25

LTL-свойства для обнаружения ошибок в LuNA-программах

SEM2.1 – повторная инициализация одиночного ФД [] (init_count_varN < 2)
SEM3.1 – неинициализированный ФД используется

вне цикла

[] (enddef_label_varN -> (is_used_varN -> is_init_varN))

SEM3.2 – циклическая зависимость по данным [] !(depends_on_varM_varK &&…&& depends_on_varN_varM)

SEM3.6 – использование ФД после его удаления [] (destroy_count_varN > 0 -> use_count_varN < 2)
SEM4 – неиспользуемый ФД [] (enddef_label_varN -> (is_init_varN -> is_used_varN))
SEM5 – формула в if/while тождественно истинна/ложна [] ((true_count_condN == 0) && (false_count_condN == 0))
SEM6 – формула в if/while истинна/ложна во всех

путях выполнения)

[] (((true_count_condN > 0)->(<>(false_count_condN > 0)))

&&

((false_count_condN > 0)->(<> (true_count_condN > 0)))

* Полный перечень типов ошибок и их описания приведен на сайте:
https://github.com/LuNA-Static-Analysis/LuNA-Static-Analysis-Repository/wiki/База-ошибок

В настоящий момент база типов ошибок* насчитывает 20 синтаксических и 20 семантических типов ошибок.

14/25

https://github.com/LuNA-Static-Analysis/LuNA-Static-Analysis-Repository/wiki/%D0%91%D0%B0%D0%B7%D0%B0-%D0%BE%D1%88%D0%B8%D0%B1%D0%BE%D0%BA

LTL-свойство для SEM6
SEM6 – формула в if/while истинна/ложна во всех путях выполнения.

ltl SEM6_condN { [] (

((true_count_condN > 0) -> (<> (false_count_condN > 0))) &&

((false_count_condN > 0) -> (<> (true_count_condN > 0)))

)}

Для любого состояния модели:

- Если хотя бы раз условие было истинным,

то найдется такое состояние, когда условие будет ложным.

- Если хотя бы раз условие было ложным,

то найдется такое состояние, когда условие будет истинным.
15/25

Пример модели LuNA программы

import c_init_int(name, int) as init;
import c_print_int(int) as print;

sub main(){
 df x, y;
 init(x, y);
 if (x == 1) {
 while (x == 1), i = 0 .. out N {
 if (x == x + 1) { // всегда ложь
 init(y, x);
 }
 }
 }
}

active proctype main() {
 if
 :: cond0=0;cond1=0
 :: cond0=0;cond1=1
 :: cond0=1;cond1=0
 :: cond0=1;cond1=1
 fi
 enddef(constant);
 def(var0);
 def(var1);
 init(var0);
 depends_on(var0, var1);
 use(var1);
 use(var0);

if
:: cond0 -> use(var0);
 if
 :: cond0 -> inc_true(cond0);
 use(var0);
 use(var0);
 if
 :: false -> inc_true(cond1)
 init(var1);
 depends_on(var1, var0);
 use(var0);
 :: else -> inc_false(cond1);
 fi
 :: else -> inc_false(cond0);
 fi
:: else -> inc_false(cond0);
fi
enddef(var0); enddef(var1);}

Модель на PromelaПрограмма на LuNA

16/25

Комплекс ADAPT составляют следующие анализаторы:

- Ast analyzer – поиск ошибок по абстрактному синтаксическому дереву (AST).
- MC-analyzer – поиск ошибок методом верификации на модели.
- DeGSA – поиск ошибок по графу информационных зависимостей.
- Prolog analyzer – поиск ошибок на основе логического представления программы на языке Prolog.

MC-analyzerAst analyzer DeGSA Prolog
analyzer

Adapt Output
Generator

Унифицированный JSON формат ошибок

Информация
об ошибках

LuNA-
программа

 Интеграция в ADAPT

17/25

Пример ошибки в формате ADAPT
{

 "error_code":"SEM6" // код ошибки

 "details":{ // описание ошибки

 "condition":"a > 0", // условное выражение в if

 "type":"true", // всегда истина

 "where":{ // конкретная строка в файле, где найдена ошибка

 "file":"/tmp/main.fa", // путь к исполняемому файлу

 "line":"5", // номер строки в этом файле

 "name":"if" // ошибка в конструкции if

 }

 }

}

(1) warning[SEM6]: Condition a > 0 is always true.

In:

File "/tmp/main.fa", line 5, in if

Вывод анализатора

18/25

Нагрузочное тестирование №1

import c_init_int(int, name) as init;
import c_print_int(int) as print;

sub main() {
 df a;
 print(a[0]);
 print(a[1]);
 ...
 print(a[N-1]);
}

ltl SEM3_1_var0 {[] (check_init(var0))}
ltl SEM3_1_var1 {[] (check_init(var1))}
ltl SEM3_1_var2 {[] (check_init(var2))}
…

active proctype main() {
 def(var0); def(var1); def(var2);
 use(var0); use(var1); use(var2);
 enddef(var0); enddef(var1); enddef(var2);
}

Модель на PromelaПрограмма на LuNA

19/25

 N
свойств

Нагрузочное тестирование №1

 Время работы в зависимости от количества LTL-свойств

20/25

Компьютер для тестирования

Процессор: AMD Ryzen 7 7730U

ОЗУ: 64 Гб

Оценка накладных расходов на существующих
программах

 Время работы в зависимости от количества LTL-свойств

Количество запусков: 100
Строк кода в LuNA-файле: 68
Количество узлов в AST: 460
Количество строк в Promela-файле: 219 21/25

Оценка накладных расходов на существующих
программах

 Время работы в зависимости от количества LTL-свойств

22/25

Количество запусков: 100
Строк кода в LuNA-файле: 201
Количество узлов в AST: 1783
Количество строк в Promela-файле: 519

Оценка накладных расходов на существующих
программах

 Время работы в зависимости от количества LTL-свойств

23/25

Количество запусков: 70
Строк кода в LuNA-файле: 484
Количество узлов в AST: 15069
Количество строк в Promela-файле: 3840

Список публикаций
1. Усенко Н.С., Власенко А.Ю. Верификация на моделях фрагментированных программ в

системе LuNA // Современное программирование: сб. ст. по материалам Междунар.
науч.-практ. конф. (Нижневартовск, 2025). – Нижневартовск : НВГУ, 2025. – С. 398-406.

2. Усенко Н.С. Применение подхода Model Checking с целью обнаружения ошибок во
фрагментированных программах для системы LuNA // Информационные технологии.
Научный инжиниринг : материалы 63-й Международной научной студенческой
конференции. — Новосибирск, 2025. — Принято к печати.

24/25

Результаты работы

1. Выявлен ряд характерных типов ошибок, свойственных LuNA-

программам и расширена база типов ошибок.

2. Проведен обзор средств автоматизированной отладки программ.

3. Был спроектирован, реализован и протестирован анализатор LuNA-

программ на основе метода верификации на моделях.

4. Произведена интеграция анализатора в комплекс ADAPT.

25/25

Спасибо за внимание!

Темпоральные операторы

Пример. Повторная инициализация ФД (SEM2*)

ltl SEM2_var0 {[] (init_count_var0 < 2)}

active proctype main() { // sub main() {
 def(var0); // df x;
 init(var0); // init(1, x);
 init(var0); // init(1, x);
 use(var0); // print(x);
 enddef(var0); // }
}

// Объявления ФК init и print
import c_init_int(int, name) as init;
import c_print_int(int) as print;

sub main() { // Объявление ФК main
 df x; // Объявление ФД x
 init(1, x); // Вызов ФК. Инициализация x
 init(1, x); // Повторная инициализация x
 print(x); // Вызов ФК print. Использование x
}

Программа на LuNA Модель на Promela

* Полный перечень классов ошибок и их описания приведен на сайте:
https://github.com/LuNA-Static-Analysis/LuNA-Static-Analysis-Repository/wiki/База-ошибок

https://github.com/LuNA-Static-Analysis/LuNA-Static-Analysis-Repository/wiki/%D0%91%D0%B0%D0%B7%D0%B0-%D0%BE%D1%88%D0%B8%D0%B1%D0%BE%D0%BA

Пример. Использование ФД после его удаления (SEM3.6)

ltl SEM3_6_var0 {[] (
 destroy_count_var0>0 ->
 use_count_var0<2)
}
active proctype main() { // sub main() {
def(var0); // df x;
init(var0); // init(1, x);
use(var0); // print(x) @ {
destroy(var0); // delete x; };
use(var0); // print(x);
enddef(var0); // }

// Объявления ФК init и print
import c_init_int(int, name) as init;
import c_print_int(int) as print;

sub main() { // Объявление ФК main
 df x; // Объявление ФД x
 init(1, x); // Вызов ФК. Инициализация x
 print(x) @ { // Вызов ФК print. Использование x
 delete x; // Очистка x
 };
 print(x); // Ошибка
}

Программа на LuNA Модель на Promela

Пример. Поиск циклических зависимостей (SEM3.2)

C++ sub int_set(name x, int v) ${{ x = v; $}}

sub main() {
 df x, y;
 int_set(x, y);
 int_set(y, z);
 int_set(z, x); //программа зависает.
}

Программа на LuNA

ltl SEM3_2_varN_..._varK {
 [] !(
 depends_on_varN_varM &&
 ...
 depends_on_varK_varN
)
}

LTL

%var1% ... %varN% – перечислений по порядку переменных, формирующих цикл.

Для любого состояния модели верно, что все
указанные зависимости не активны одновременно

Перспективы

1. Расширение возможностей анализатора для поддержки новых семантических
ошибок.

2. Параллельная проверка набора LTL-свойств для ускорения анализа.
3. Генерация отдельных моделей под каждое проверяемое свойство.

