
Optimization of Parallel Execution of Numerical
Programs in LuNA Fragmented Programming

System

Victor Malyshkin and Vladislav Perepelkin

Institute of Computational Mathematics and Mathematical Geophysics
Russian Academy of Sciences

Prospekt Akademika Lavrentjeva 6, Novosibirsk, Russia
{malysh, perepelkin}@ssd.sscc.ru

Abstract. Organization of high performance execution of fragmented
programs met the problem of choice of acceptable way of their execution.
The possibilities of execution optimization on the stages of fragmented
program development, compilation and execution are considered. The
methods and algorithms of optimizations are suggested to be included
both in fragmented programming language and in run-time system.

Key words: parallel programming, fragmented programming, high per-
formance computing, program execution optimization.

1 Introduction

The idea of data and algorithms fragmentation is exploited in programming at
least from the early 1970th [1–8]. Generally, the model of a program in this
approach looks as follows. The data are fragmented and values of the simple
(atomic) variables can be the data aggregates (data fragment (DF)) that usually
reflect the essence of an object domain. For example, a cell of a 3D-mesh in
Particle-In-Cell method can be considered as atomic part of the description of
the minimal part of a simulated phenomenon. The variables’ description can
reflect the structure of its value, i.e., a DF structure. In particular, in numerical
algorithms a sub-matrix of a matrix can be defined as a DF and the whole
matrix is represented as an array of its sub-matrices. An operation computes
the values of output variables from the input variables. An operation plus input
and output variables is called a fragment of computation (FC) (Fig. 1). DFs have
unique names that predefine single assignment mode of programming. Therefore,
if two or more FCs compute the value of a certain variable, then the same DF
is yielded by each FC as the value of this variable (fig. 1.b and 1.c). This is
the restriction on the set of permitted interpretations. Any FC has also unique
name. A fragmented program (FP) is represented as a computable set of FC. A
FC can be executed once if certain values are assigned to all of its input variables.
Formal definitions and more details can be found in [3].

Different modifications of this general model were embodied in programming
systems as commercial [2, 4] or academic [5] product. In [2] instead of usually used



2 Optimization of Parallel Execution in LuNA Programming System

Fig. 1. Fragments of computation and data fragments.

run-time system for FCs execution a special operating system was developed.
Many programming systems use run-time systems for computation organization
[6–12]. Problems of the set of the FCs execution are well known and shortly can
be formulated as:

a. dynamic resources allocation,
b. dynamic DFs and FCs distribution and their migration among the processor

elements (PE) of a multicomputer,
c. dynamic choice of a certain FC for execution.

Obviously, the algorithms, used to overcome the problems above, cardinally influ-
ence on providing such important properties of a program as dynamic tunability
to all the available resources, dynamic load balancing, data transfer in parallel
with computations and so on.

Taking into account the necessity to solve the above listed problems, basing
on the experience of the other related developments, we started the development
of our fragmented programming system LuNA, based on the theory of parallel
program synthesis [3]. The system is oriented to the development of FPs, im-
plementing large scale numerical models. First planned application of LuNA is
the creation of parallel numerical subroutine library. Every subroutine should be
automatically provided with all the necessary dynamic properties. Aside from
the different problems of the LuNA creation we are concentrated here on the
problem of high performance execution of a FP.

2 LuNA model of a program.

The general model is modified in order to meet LuNA needs. LuNA is the pro-
gramming system, not the system of program synthesis. Therefore, there is no
necessity to include in the LuNA model the single assignment. In order to facil-
itate the resources allocation and the data distribution the variables are defined
similar to variables definition in programming languages, i.e., the name of a
variable denotes the memory extent where different values are kept at different
moments.

Contrary to variable’s names an operation name denotes a certain execution
of an operation. In particular, if an operation (procedure) b should be applied to



Optimization of Parallel Execution in LuNA Programming System 3

every entry of the array x (fig. 2.a), then i-th execution of b is denoted as bi . Two
sets of the FCs are defined in fig. 2.a: {ai, i = 1, 2, 3, . . .} = {i = 1, 2, 3, . . . |x[i] →
ai → x[i + 1]}, {bi, i = 1, 2, 3, . . .} = {i = 1, 2, 3, . . . |x[i] → bi → y[i]}. Each FC
is named by the indexed name of its operation.

Fig. 2. Sample FP (a) and loop computations (b).

Loopwise computations are shown in the fig. 2.b. The set of the FCs {i =
1, 2, 3, . . . |x → ai → x} is defined. The order of the FCs execution is defined by
the binary partial order relation ρ = {i = 1, 2, 3, . . . | < ai, ai+1 >} (relation ρ).
This means, that FC ai should be executed before ai+1. For computation in fig.
2.a the order of the FCs execution is defined by the information dependencies
between operations whereas for computations in fig. 2.b the order should be
defined explicitly. The resources allocation for the array x implementation is
done in fig. 2.b by a user.

A certain FC can be chosen for execution, if its execution does not contradict
to the relation ρ. The relation ρ should guarantee the correct execution of the
FP.

As result, LuNA language contains at least the facilities for definition of the
DFs, the FCs and the relation ρ on the set of FCs. Therefore, the LuNA user has
the possibility to define at least partially the resources allocation (see fig. 2.b).
This might substantially improve the results of automatic resources allocation
and the FCs distribution done by LuNA compiler and run-time system.

3 Fragmented algorithms and their execution.

3.1 Matrices multiplication.

Fragmented version of the algorithm of two square matrices A and B multipli-
cation, C = A×B, is considered. Matrices are represented by the square K×K
matrices of square sub-matrices Ai,k, Bk,j , Ci,j (see fig. 3). Sub-matrices Ai,k,
Bk,j , Ci,j are the DFs here.

Intermediate values are kept in DFs Ci,j,k. The FCs Fi,j,k and Si,j perform
matrices multiplication Ai,k × Bk,j = Ci,j,k and summation Ci,j =

∑K
k=1 Ci,j,k



4 Optimization of Parallel Execution in LuNA Programming System

respectively. Necessary order to compute the product C correctly is Fi,j,k <
Si,j∀i, j.

Fig. 3. Schema of fragmented algorithm of matrices multiplication

Run-time system chooses a certain FC for execution in any order, which
does not contradict to the relation ρ . In this case the correct result of the FP
execution will be produced, but the FP execution performance might be poor.
For example, execution of any FC Fi,j,k produces a DF Ci,j,k, therefore some
memory extent should be allocated to keep its value. On the other hand, after Si,j

execution the memory, allocated for the DFs Ci,j,k, is released. Run-time system
should take this into account when FC is chosen for execution, otherwise the
computer memory might be exhausted not productively. Good (recommended)
order would be the one with FCs Si,j executed as soon as possible (but only
after all the Fi,j,k with the same i and j are finished).

Another problem here is data distribution. To what PE a certain DF should
be allocated? Random distribution results in huge communications and some
PEs can be idle due to load imbalance. In LuNA there are opportunities, which
are considered in section 4, to control the DFs distribution and migration to
provide good performance.

3.2 LU-factorization.

Another example is the fragmentation of LU-factorization algorithm. Square
n×n matrix A is factorized into lower triangular matrix L and upper triangular
matrix U , A = L× U .

u1,j = a1,j , j = 1, . . . , n
lj,1 = aj,1

u1,1
, j = 2, . . . , n

ui,j = ai,j −
∑i−1

k=1 li,kuk,j , i = 2, . . . , n; j = i, . . . , n

lj,i = 1
ui,j

(aj,i −
∑i−1

k=1 lj,kuk,j)i = 2, . . . , n; j = i + 1, . . . , n

(1)



Optimization of Parallel Execution in LuNA Programming System 5

Matrix A is represented by the K ×K matrix of Ai,j sub-matrices. Matrices
L and U are both represented by the same K ×K matrix of Li,j and Ui,j sub-
matrices (fig. 4.a). They are the DFs. Each DF Ai,j is processed in accordance to
formulas (1) by the FCs Li,j , Di or Ui,j , for lower diagonal, diagonal and upper
diagonal DFs respectively, as shown in fig. 4.a. The relation ρ is defined by the
information dependencies in (1) as follows: The FCs Di should be executed after
Li,j−1 and Ui−1,j , the FCs Ui,j should be executed after Ui−1,j and Di, and the
FCs Li,j should be executed after Li,j−1 and Dj (fig 4.b).

Fig. 4. LU factorization. General schema (a) and order schema (b).

It is clear from 4.b, that execution of the FC Di increases the number of the
FCs ready to be executed (ready FC ), whereas the execution of the other FCs
reduces it. To exploit the algorithm’s parallelism the set of the ready FCs must
be large enough to load all the PEs over time. Therefore, run-time system should
provide the execution of the FCs Di before the other FCs’ execution. The fig. 5
illustrates two FC choice algorithms. The first is to choose the Di FCs last. It
leads to situations, when only one FC is ready (fig. 5.a), and all the PEs are idle
waiting for only one FC to be completed. The second algorithm chooses the FCs
according to the diagonal front, as shown in fig. 5.b. It provides more parallelism
and enables more effective program execution. The opportunities to control the
FC choice are considered in section 4.

Fig. 5. LU factorization, FC choosing.



6 Optimization of Parallel Execution in LuNA Programming System

4 The other opportunity to optimize the execution of a
set of FC.

There are several technological opportunities, used in LuNA system, to improve
a set of FC execution. Those are the means to express supplementary information
about a FP and recommended ways of its execution. Note, that different hard-
ware requires different recommendations; therefore both general and hardware-
dependent recommendations can be provided by user. Run-time system selects
the most suitable recommendation set.

4.1 Priority.

A real number called priority is assigned to each FC. At any moment, run-
time system tries to choose for execution a fragment with the highest priority
available. This allows controlling the FC execution flow to reach better resources
usage. The LuNA run time system not only chooses the highest priority FC for
execution, but also schedules FCs execution in such a way, that high priority
FCs become ready sooner. In the LU-factorization FP (example in section 3.2
above) the DFs Di should have higher priorities, than the rest of the FCs.

4.2 Groups and derivation algorithm use.

LuNA language has the facilities in order a user could describe a group of FCs.
Usually, the information depended FCs are included into the group. The FCs,
belonging to such a group, are executed in accordance with the MGF strategy
(Member of Group First). With the MGF strategy if a certain FC, included into
a group, was chosen for execution, then the higher priority is assigned to all the
other FCs, belonging to the same group. This strategy leads to consumption of
the intermediate DFs soon after they were computed.

The groups can be formed by LuNA compiler using the derivation algorithm
[3]. This algorithm processes the countable set of the FCs, that constitute the
FP, re-constructs the set of functional terms, implemented by the FP, and then
folds them into the finite sets of indexed functional terms (see fig. 2.b). A range
of different optimizing transformations of the sets of indexed functional terms is
also provided. Any FCs, included into a certain indexed functional term, is also
included into a group. Construction of these sets of indexed functional terms
permits the use automatically the MGF strategy in run-time system.

In the matrices multiplication algorithm above (section 3.1) in order to op-
timize the resources usage the groups’ definition can be exploited. All the FCs
Fi,j,k with the same values of their indices i and j are included into the same
group. If a certain FC is chosen for execution, the priorities of all the other FCs
from its group are increased. Thus, mostly this group’s FCs will execute. As
result, all the intermediate resources keeping the DFs Di,j,k will be released.



Optimization of Parallel Execution in LuNA Programming System 7

4.3 Weight of FC.

Weight of FC is a real-valued function, defined on the set of FCs. It represents
an estimation of the FC’s execution time. In the LU-factorization (section 3.2)
the time of computation of the FCs increases in the direction to the right bottom
corner of the matrix. The value of Weight gives the run-time system this info.

4.4 Neighborhood relation.

A binary neighborhood relation ν is defined on the set of the DFs. Two DFs are
defined to be neighbor-related if it is recommended to keep them close to each
other, for example, in the memory of the same PE. Usually this is done for the
DFs, which are the input values of a certain FC, and location of them in the same
PE leads to reduction of the total communication overhead. This relation can be
constructed automatically, basing on the structure of information dependences
of the FP, but in general case, neighborhood relation ν is better defined by the
user.

Neighborhood relation ν is considered when performing initial data distri-
bution with low communication overhead, or dynamic load balancing, that also
should keep the neighborhood relation ν .

The numerical algorithms employ limited number of spatial data structures,
like vectors, matrices, arrays, 3D meshes. LuNA supports explicit declaration of
such data structures and implements a number of algorithms to perform initial
distribution and structure-keeping dynamic load balancing on commonly used
hardware network topologies, like 3D torus, cluster or complete graph.

5 Performance tests.

The ideas presented were implemented in experimental LuNA functional pro-
gramming system. It comprises the language of FPs description, the translator
to an executable representation and the run-time system. A number of tests
was performed. Priority and group testings were performed on a 8-core SMP
multiprocessor. Weights and neighborhood relation testings were performed on
a cluster.

5.1 Priority testing.

The test should demonstrate the advantages of the priority use. Three tests were
accomplished for LU-factorization (example in section 3.2):

1. Ineffective. The relation ρ is defined in such a way, that the ineffective order
of the FCs execution would be implemented (fig. 5.a.).

2. Priority-based. The relation ρ reflects only information dependences between
the FCs. Two different priorities were assigned to the FCs. The higher pri-
ority was assigned to Di FCs and the lower for the rest of the FCs. Certain
order was chosen dynamically by the run-time system.



8 Optimization of Parallel Execution in LuNA Programming System

3. Effective. The relation ρ is defined in such a way, that the effective order of
the FCs execution would be implemented (fig. 5.b)

The results of testing are shown in fig. 6.a.

Fig. 6. Priority and group performance tests.

5.2 Group testing.

Groups’ use influences to the execution time of the matrices multiplication pro-
gram (example in section 3.1) was tested in 3 tests:

1. Ineffective. The relation ρ is such defined that all the FCs Si,j are executed
the last. As a result all the DFs Ci,j,k are kept in the memory long time.
This is the most time- and memory-consuming FP execution.

2. Group-based. The priorities of the FCs of the same group are dynamically
increased.

3. Economical. The FCs execution from another group is never started before
the execution of all the FCs from a currently executed group are completed.

The results are shown in fig. 6.b.

5.3 Neighborhood relation and FC weight testing.

The model of fragmented algorithm of Particle-In-Cell method (PIC) [15] imple-
mentation was used for testing. This is explicit finite differences 3D scheme. A
3D mesh is represented by 3D grid of DFs. Processing of each DF requires the
values from its 26 neighbors. The 3D grid of the DFs is processed iteratively by
the FC F t

i,j,k , where i, j and k are the indices of the FCs name, and t is the
iteration number. The execution time of the FC F t

i,j,k is defined by the function
fi,j,k(t). Different definitions of fi,j,k(t) lead to different model behaviors. The



Optimization of Parallel Execution in LuNA Programming System 9

fi,j,k(t) was chosen in such a way that PIC model imitated the soliton orbit-
ing a massive center. Correspondingly the time of the FCs F t

i,j,k execution was
changing.

Fig. 7. Neighborhood relation influence on dynamic load balancing.

On the graphics four balancing versions are shown. The abscissa axis is the
iteration number, the ordinate axis is the iteration execution time.

The None version has no dynamic load balancing, the DFs don’t migrate.
The execution time remains about the same, but a lot of PEs’ time is wasted,
since the workload is not uniformly distributed.

The Diffusion version is a certain diffusion dynamic load balancing algorithm.
The load is being balanced, but the communication overhead grows, since the
DFs are mixing up, and the total execution time even exceeds the unbalanced
version.

The Neighbor variant is the diffusion load balancing with neighborhood rela-
tion taken into account. Those DFs migrate, which have more neighbors in the
target PE. Such load balancing keeps communication overhead at certain level,
and it doesn’t grow with the lapse of time.

The Weight variant is the same as the Neighbor, but the FCs’ weights are
taken into account by run-time system. The function fi,j,k(t) is used as the
FCs’ weight. The load balancing algorithm works more accurate, compared to
Neighbor variant, and the execution time is a bit less.



10 Optimization of Parallel Execution in LuNA Programming System

6 Conclusion.

The LuNA system of fragmented programming is yet under development and
improvement. Our next step is the development of the parallel numerical sub-
routine library on the basis of LuNA system.

References

1. Glushkov, V.M., Ignatiev, M.V., Myasnikov V.A., Torgashev V.A.: Recursive ma-
chines and computing technologies. In: IFIP Congress, Vol.1., pp. 65–70. North-
Holland Publish. Co (1974)

2. Torgashev, V.A., Tsarev, I.V.: Programming facilities for organization of paral-
lel computation in multicomputers of dynamic architecture. Programmirovanie,
No.4, pp. 53–67 (2001) (In Russian) (Sredstva organizatsii parallelnykh vychislenii
i programmirovaniya v multiprocessorakh s dynamicheskoi architechturoi)

3. Valkovskii, V.A., Malyshkin V.E.: Parallel Program Synthesis on the Basis of Com-
putational Models. Novosibirsk, Nauka (In Russian. Sintez parallel’nykh program
i system na vychislitel’nykh modelyakh) (1988)

4. Cell Superscalar, http://www.bsc.es/cellsuperscalar
5. Charm++, http://charm.cs.uiuc.edu
6. Shu, W., Kale, L.V.: Chare Kernel – a Runtime Support System for Parallel Com-

putations. Journal of Parallel and Distributed Computing, Vol. 11, Issue 3, pp.
198–211 (1991)

7. Kalgin, K.V., Malyskin, V.E., Nechaev, S.P., Tschukin, G.A.: Runtime System for
Parallel Execution of Fragmented Subroutines. In: 9th International conference on
Parallel Computing Technologies (PaCT-2007), Springer Verlag, LNCS, Vol. 4671,
pp. 544–552 (2007)

8. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An Efficient Multithreaded Runtime System. ACM SIGPLAN Notices,
Vol. 30, Issue 8, pp. 207–216 (1995)

9. Foster, I., Kesselman, C., Tuecke, S.: Nexus: Runtime Support for Task-Parallel
Programming Languages. Cluster Computing, Issue 1(1), pp. 95–107 (1998)

10. Chien, A.A., Karamcheti, V., Plevyak, J.: The Concert System – Compiler and
Runtime Support for Efficient, Fine-Grained Concurrent Object-Oriented Pro-
grams. UIUC DCS Tech Report R-93-1815 (1993)

11. Grimshaw, A.S., Weissman, J.B., Strayer, W.T.: Portable Run-Time Support for
Dynamic Object-Oriented Parallel Processing. ACM Transactions on Computer
Systems (TOCS), Vol. 14, Issue 2, pp. 139–170 (1996)

12. Benson, G.D., Olsson, R.A.: A Portable Run-Time System for the SR Concurrent
Programming Language. In: Workshop on Run-Time Systems for Parallel Pro-
gramming (RTSPP) (1997)

13. Malyshkin, V.E., Sorokin, S.B, Chauk, K.G.: Fragmentation of numerical algo-
rithms for the Parallel Subroutine Library. Springer Verlag, LNCS, Vol. 5698, pp.
331–343 (2009)

14. Kraeva, M.A., Malyshkin, V.E.: Implementation of PIC Method on MIMD Mul-
ticomputers with Assembly Technology. In: HPCN Europe 1997, Springer Verlag,
LNCS, Vol. 1277, 1997. pp. 541–549 (1997)

15. Kraeva, M.A., Malyshkin, V.E.: Assembly Technology for Parallel Realization of
Numerical Models on MIMD-Multicomputers. In: Int. Journal on Future Genera-
tion Computer Systems, Elsevier Science. Vol. 17, No. 6, pp. 755–765 (2001)


