Associative Version of the Ramalingam Incremental Algorithm for the Dynamic All-Pairs Shortest-Path Problem

A.S. Nepomniaschaya

Institute of CM&MG SD RAS
Novosibirsk, 2017
Plan

Introduction.
The STAR-machine.
Preliminaries.
 The Ramalingam algorithm for the dynamic update of the APSPs after inserting an edge.
Representing the Ramalingam algorithm on the STAR-machine.
Main advantages of representing the Ramalingam algorithm on the STAR-machine.
Conclusions.
The STAR-machine

Sequential Control Unit
Data array

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>...</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Associative processing unit

<table>
<thead>
<tr>
<th>R_1</th>
<th>R_2</th>
<th>...</th>
<th>R_h</th>
</tr>
</thead>
</table>
Operations for vertical processing

\textbf{var} \ X, Y: \ 	exttt{slice}; \ i, j: \ 	exttt{integer};

\texttt{v, w: \ word; \ T: \ table;}

\texttt{SET(Y)} sets all comp. of the slice \ Y to '1';
\texttt{CLR(Y)} sets all comp. of the slice \ Y to '0';
\texttt{Y(i)} returns the \ i-th comp. of the slice \ Y;
\texttt{NUMB(Y)} returns the number of bits '1' in the slice \ Y;
\texttt{FND(Y)} returns the ordinal number of the first bit '1' in the slice \ Y;
\texttt{STEP(Y)} returns the same result as \ FND(Y) and then resets the first bit '1' to '0';
Bitwise Boolean operations:
X and Y, X or Y, not Y, X xor Y.

Predicate: SOME(Y).

Operations for rows:
TRIM(i,j,w), REP(i,j,v,w), ADD(v,w).

Operations for matrices:
ROW(i,T) returns the i-th row of T;
COL(i,T) returns the i-th column of T.
Let $G = (V,E)$ be a digraph, $V = \{1,2,...,n\}$ and E is the set of m arcs. Let $wt(e)$ be a weight function, where $wt(e) \geq 0$.

In any arc $e = (u,v)$, $u \rightarrow v$, u is the tail of e and v is its head.

The shortest path between two vertices in G is a path with the minimal sum of weights of its arcs.

We consider graphs with a distinguished vertex z called 'sink'.

Let $dist(u,z)$ denote the length of the shortest path from u to the sink z.
• $\text{Pred}(u) = \{ y / y \rightarrow u \in E \}$.

• Let (i,j) be inserted in G. Vertex u is affected in G if $\text{dist}(u,z)$ is changed.

• $\text{AffectedVert} = \{ y / y \text{ is affected in } G \}$.

• $\text{SP}(a,b,c) \leftrightarrow (\text{dist}(a,c) = \text{wt}(a,b) + \text{dist}(b,c) \& \text{dist}(a,c) \neq \text{infinity})$.
 $\text{SP}(a,b,c)$ verifies whether (a,b) belongs to the shortest path from a to c.
The Ramalingam incremental algorithm for updating the all-pairs shortest paths

- Let \((i,j)\) be inserted in \(G\). The algorithm runs as follows.

- At first, it computes the set \(\text{AffectedSinks}\).

- Then for every \(v \in \text{AffectedSinks}\), it applies the simplified form of the incremental alg. for updating the shortest paths subgraph with a sink.

The simplified form computes the set \(\text{AffectedVert}\). It uses the sets \(\text{WorkSet}, \text{AffectedVert}, \) and \(\text{VisitedVert}\).
The simplified form of the incremental algorithm for updating the shortest paths subgraph

function InsertUpdate \((G, i \rightarrow j, z)\);

Begin

- \(\text{WorkSet} := \{(i,j)\}\);
- \(\text{AffectedVert} := \{\emptyset\}\);
- \(\text{VisitedVert} := \{i\}\);

While \(\text{WorkSet} \neq \emptyset\) do
 - Select and Remove \(x \rightarrow u\) from \(\text{WorkSet}\);
 - if \(\text{wt}(x,u) + \text{dist}(u,z) < \text{dist}(x,z)\) then
 - Insert \(x\) in \(\text{AffectedVert}\);
 - \(\text{dist}(x,z) := \text{wt}(x,u) + \text{dist}(u,z)\);
for every $y \in \text{Pred}(x)$ do
 if $\text{SP}(y,x,z)$ and y not in VisitedVert then
 Insert (y,x) in WorkSet;
 Insert y in VisitedVert;
 fi;
od;
fi;
od;
End.
The incremental algorithm for the dynamic update of the all-pairs shortest paths is given as procedure `InsertEdge` that uses `AffectedSinks`.

```plaintext
procedure InsertEdge(G, i → j, c);
Begin
Insert edge into E(G);
wt(i,j) := c;
AffectedSinks := InsertUpdate(G, i → j, j);
for every x ∈ AffectedSinks do
   InsertUpdate(G, i → j, x);
End.
```
Associative version of the Ramalingam incremental algorithm for updating the all-pairs shortest paths

The data structure:

An *adjacency* matrix Adj;

a matrix *Weight* that consists of n fields having h bits each;

a matrix *Cost* that consists of n fields having h bits each;

a matrix *Dist* that consists of n fields having h bits each;

a matrix *Dist1* that consists of n fields having h bits each;

a slice *AffectedV* that saves positions of affected vertices.
On the STAR-machine, we first present the function InsertUpdate. It uses the auxiliary proc. **ComputePred2** that defines *in parallel* the tails of arcs \((y,u)\) for which the predicates \(SP(y,u,s}\) are true.

We have obtained that **ComputePred2** takes \(O(h)\) time.
The simplified form of the increment. algorithm for updating the shortest paths subgraph on the STAR-machine

```pascal
varAffectedV, VisitedV, Z, Z1: slice(Adj);
WS: array [1..2,1..m] of integer;
X: slice(WS);

Begin CLR(AffectedV); CLR(VisitedV); CLR(X);
Write (i,j) in the first row of WS.
X(1) := ‘1’; VisitedV(i) := ‘1’;
while SOME(X) do
begin k := STEP(X);
 Remove the arc (u,p) from the k-th row of WS;
 Compute w3 := wt(u,p) + dist(p,s);
```
if $w_3 \geq \text{dist}(u,s)$ then
go to cycle while SOME(X) do
else begin
 AffectedV(u) := ‘1’;
dist(u,s) := w_3;
Perform the proc. \textit{ComputePred2}.
Let ComputePred2 return the slice Z.
$Z_1 := Z \text{ and } \neg \text{VisitedV}$;
VisitedV := VisitedV or Z_1;
For every vertex $p \in Z_1$, include the arc (u,p) in WS.
end;
End.
On the STAR-machine, the simplified form of the increment algorithm for updating the shortest paths subgraph is given as procedure \texttt{InsertUpdate}.

\textbf{Claim 1.} Let a graph G have n vertices and a sink s. Let an arc (i,j) be inserted in G. Let the matrices \texttt{Weight}, \texttt{Cost}, \texttt{Dist}, \texttt{Dist1} and \texttt{Adj} be given. Then \texttt{InsertUpdate} returns a slice \texttt{AffectedV}.

Let the slice \texttt{AffectedV} consist of q vertices. Then \texttt{InsertUpdate} takes $O(qh)$ time.
procedure InsertEdge(i,j,h,n: integer;
 v0: word(Trim); var Adj: table; var Weight,
 Cost, Dist, Dist1: table);
/* Here wt(i,j) = v0 . */
var AffectedV, AffectedSinks: slice(Adj);
 z1: integer;
Begin Insert v0 in the matrix Weight;
 Insert v0 in the matrix Cost;
 Include the arc (i,j) in the matrix Adj;
Perform InsertUpdate for the sink \(s = j \);

/* Recall that it returns the slice \(\text{AffectedV} \). */

\(\text{AffectedSinks} := \text{AffectedV}; \)

\(\text{while} \ \text{SOME}(\text{AffectedSinks}) \ \text{do} \)

\(\text{begin} \ z1 := \text{STEP}(\text{AffectedSinks}); \)

\(\quad \text{InsertUpdate}(i,j,h,n,z1,\text{Weight}, \text{Cost}, \text{Adj}, \)
\(\quad \quad \text{Dist}, \text{Dist1}, \text{AffectedV}); \)

\(\text{end}; \)

\(\text{End}; \)
Conclusions

- We have proposed the associative version of the Ramalingam incremental alg. for the dynamic update of the all-pairs shortest paths.
- It has been given as procedure `InsertEdge` those correctness has been proved.
- We have obtained that `InsertEdge` takes $O(hkr)$ time per an insertion, where k is the number of affected sink vertices, r is the total sum of affected vertices for different sink vertices.
- We have shown the main advantages of representing the associative version of the incremental algorithm on the STAR-machine.